Discrete approximation of the Hamilton Jacobi equation for the value function in an optimal control problem with infinite horizon

Research output: Contribution to journalArticleResearchpeer-review

Abstract

В статье рассматривается задача оптимального управления на бесконечном горизонте с подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Основной особенностью постановки задачи является неограниченность подынтегрального индекса. Это позволяет проводить анализ моделей экономического роста с линейными, степенными и логарифмическими функциями полезности. Исследуется дискретная аппроксимация уравнения Гамильтона - Якоби для построения функции цены исходной задачи. Показано выполнений условий Гёльдера и подлинейного роста для решения уравнения дискретной аппроксимации. Показана равномерная сходимость решений аппроксимационных уравнений к функции цены задачи оптимального управления. Полученные результаты могут быть использованы для построения сеточных методов аппроксимации функции цены задачи оптимального управления на бесконечном интервале времени. Разрабатываемые методы являются эффективными средствами в моделировании процессов экономического роста.

Translated title of the contributionDiscrete approximation of the Hamilton Jacobi equation for the value function in an optimal control problem with infinite horizon
Original languageRussian
Pages (from-to)27-39
Number of pages13
JournalТруды института математики и механики УрО РАН
Volume24
Issue number1
DOIs
Publication statusPublished - 2018

Keywords

  • discrete approximation
  • optimal control
  • Hamilton Jacobi equation
  • viscosity solution
  • infinite horizon
  • value function

GRNTI

  • 27.00.00 MATHEMATICS

Level of Research Output

  • VAK List

Cite this

@article{e962052022ad46dfab1ec9f855e39a46,
title = "ДИСКРЕТНАЯ АППРОКСИМАЦИЯ УРАВНЕНИЯ ГАМИЛЬТОНА - ЯКОБИ ДЛЯ ФУНКЦИИ ЦЕНЫ В ЗАДАЧЕ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ С БЕСКОНЕЧНЫМ ГОРИЗОНТОМ",
abstract = "В статье рассматривается задача оптимального управления на бесконечном горизонте с подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Основной особенностью постановки задачи является неограниченность подынтегрального индекса. Это позволяет проводить анализ моделей экономического роста с линейными, степенными и логарифмическими функциями полезности. Исследуется дискретная аппроксимация уравнения Гамильтона - Якоби для построения функции цены исходной задачи. Показано выполнений условий Гёльдера и подлинейного роста для решения уравнения дискретной аппроксимации. Показана равномерная сходимость решений аппроксимационных уравнений к функции цены задачи оптимального управления. Полученные результаты могут быть использованы для построения сеточных методов аппроксимации функции цены задачи оптимального управления на бесконечном интервале времени. Разрабатываемые методы являются эффективными средствами в моделировании процессов экономического роста.",
keywords = "discrete approximation, optimal control, Hamilton Jacobi equation, viscosity solution, infinite horizon, value function",
author = "Bagno, {Aleksandr Leonidovich} and Taras'ev, {Aleksandr Mlkhailovich}",
year = "2018",
doi = "10.21538/0134-4889-2018-24-1-27-39",
language = "Русский",
volume = "24",
pages = "27--39",
journal = "Труды института математики и механики УрО РАН",
issn = "0134-4889",
publisher = "Институт математики и механики им. Н.Н. Красовского УрО РАН",
number = "1",

}

TY - JOUR

T1 - ДИСКРЕТНАЯ АППРОКСИМАЦИЯ УРАВНЕНИЯ ГАМИЛЬТОНА - ЯКОБИ ДЛЯ ФУНКЦИИ ЦЕНЫ В ЗАДАЧЕ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ С БЕСКОНЕЧНЫМ ГОРИЗОНТОМ

AU - Bagno, Aleksandr Leonidovich

AU - Taras'ev, Aleksandr Mlkhailovich

PY - 2018

Y1 - 2018

N2 - В статье рассматривается задача оптимального управления на бесконечном горизонте с подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Основной особенностью постановки задачи является неограниченность подынтегрального индекса. Это позволяет проводить анализ моделей экономического роста с линейными, степенными и логарифмическими функциями полезности. Исследуется дискретная аппроксимация уравнения Гамильтона - Якоби для построения функции цены исходной задачи. Показано выполнений условий Гёльдера и подлинейного роста для решения уравнения дискретной аппроксимации. Показана равномерная сходимость решений аппроксимационных уравнений к функции цены задачи оптимального управления. Полученные результаты могут быть использованы для построения сеточных методов аппроксимации функции цены задачи оптимального управления на бесконечном интервале времени. Разрабатываемые методы являются эффективными средствами в моделировании процессов экономического роста.

AB - В статье рассматривается задача оптимального управления на бесконечном горизонте с подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Основной особенностью постановки задачи является неограниченность подынтегрального индекса. Это позволяет проводить анализ моделей экономического роста с линейными, степенными и логарифмическими функциями полезности. Исследуется дискретная аппроксимация уравнения Гамильтона - Якоби для построения функции цены исходной задачи. Показано выполнений условий Гёльдера и подлинейного роста для решения уравнения дискретной аппроксимации. Показана равномерная сходимость решений аппроксимационных уравнений к функции цены задачи оптимального управления. Полученные результаты могут быть использованы для построения сеточных методов аппроксимации функции цены задачи оптимального управления на бесконечном интервале времени. Разрабатываемые методы являются эффективными средствами в моделировании процессов экономического роста.

KW - discrete approximation

KW - optimal control

KW - Hamilton Jacobi equation

KW - viscosity solution

KW - infinite horizon

KW - value function

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000436169800003

UR - https://elibrary.ru/item.asp?id=32604042

U2 - 10.21538/0134-4889-2018-24-1-27-39

DO - 10.21538/0134-4889-2018-24-1-27-39

M3 - Статья

VL - 24

SP - 27

EP - 39

JO - Труды института математики и механики УрО РАН

JF - Труды института математики и механики УрО РАН

SN - 0134-4889

IS - 1

ER -