A differential game with simple motions on the plane and its nonlinear modification: Master's thesis

Research output: ThesisMaster's ThesisResearch

Abstract

The work is devoted to the analytic construction of solvability sets (the maximal stable bridges) in two examples of antagonistic differential games. In the first example, the control system is described by the dynamics of simple motions. The sections of the solvability sets at given time are defined on the basis of the terminal set and sets restricting the players' controls by means of the algebraic sum and the geometric difference. In the proof, we construct optimal strategies of the players explicitly. In the second example, we consider the system with modified dynamics, in which the possibilities capabilities of the second player depend on the phase position of the system. The investigation is carried out by means of the characteristic system of the Hamilton–Jacobi–Isaacs equation. We found conditions on the parameters of the problem under which the boundary of the solvability set is smooth. For the remaining values of the parameters, we found a qualitative picture of the, which is similar to the solution in the first example and has a scattering line. The obtained results can be used as a basis for further analytical studies of differential games with the dependence of the players' possibilities on the phase position of the system as well as for the development of numerical methods for solving such problems.
Translated title of the contribution A differential game with simple motions on the plane and its nonlinear modification: Master's thesis Russian Master of Science Ural Federal University Камнева, Людмила Валерьевна, Supervisor Published - 2017

Fingerprint

Differential Games
Motion
Solvability
Optimal Strategy
Numerical Methods
Control System
Scattering
Line

Cite this

@phdthesis{8d05606d13344f28acac2cca521d1121,
title = "Дифференциальная игра c простыми движениями на плоскости и ее нелинейная модификация: магистерская диссертация",
abstract = "Работа посвящена аналитическому построению множеств разрешимости (максимальных стабильных мостов) в двух примерах антагонистических дифференциальных игр. В первом примере управляемая система описывается динамикой простых движений. Сечения множеств разрешимости в заданный момент времени определяются на основе терминального множества и множеств, ограничивающих управления игроков, с помощью операций алгебраической суммы и геометрической разности. Доказательство проводится при помощи явного построения оптимальных стратегий игроков. Во втором примере рассматривается система с модифицированной динамикой, при которой возможности второго игрока зависят от фазового положения системы. Исследование проводится при помощи характеристической системы уравнения Гамильтона – Якоби – Айзекса. Выделены условия на параметры задачи, при которых граница множества разрешимости является гладкой. Для остальных значений параметров найдена качественная картина решения, которая аналогична решению в первом примере и обладает рассеивающей линией. Полученные результаты могут быть использованы как основа для дальнейших аналитических исследований дифференциальных игр с зависимостью возможностей игроков от фазового положения системы, а также для разработки численных методов решения таких задач.",
keywords = "Математика",
author = "Загреева, {Светлана Ринатовна}",
note = "Загреева С. Р. Дифференциальная игра c простыми движениями на плоскости и ее нелинейная модификация : магистерская диссертация / С. Р. Загреева ; Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, Институт естественных наук и математики, Кафедра математического анализа. — Екатеринбург, 2017. — 31 с. — Библиогр.: с. 31-31 (5 назв.).",
year = "2017",
language = "Русский",
school = "Уральский федеральный университет",

}

2017. 31 p.

Research output: ThesisMaster's ThesisResearch

TY - THES

T1 - Дифференциальная игра c простыми движениями на плоскости и ее нелинейная модификация

T2 - магистерская диссертация

AU - Загреева, Светлана Ринатовна

N1 - Загреева С. Р. Дифференциальная игра c простыми движениями на плоскости и ее нелинейная модификация : магистерская диссертация / С. Р. Загреева ; Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, Институт естественных наук и математики, Кафедра математического анализа. — Екатеринбург, 2017. — 31 с. — Библиогр.: с. 31-31 (5 назв.).

PY - 2017

Y1 - 2017

N2 - Работа посвящена аналитическому построению множеств разрешимости (максимальных стабильных мостов) в двух примерах антагонистических дифференциальных игр. В первом примере управляемая система описывается динамикой простых движений. Сечения множеств разрешимости в заданный момент времени определяются на основе терминального множества и множеств, ограничивающих управления игроков, с помощью операций алгебраической суммы и геометрической разности. Доказательство проводится при помощи явного построения оптимальных стратегий игроков. Во втором примере рассматривается система с модифицированной динамикой, при которой возможности второго игрока зависят от фазового положения системы. Исследование проводится при помощи характеристической системы уравнения Гамильтона – Якоби – Айзекса. Выделены условия на параметры задачи, при которых граница множества разрешимости является гладкой. Для остальных значений параметров найдена качественная картина решения, которая аналогична решению в первом примере и обладает рассеивающей линией. Полученные результаты могут быть использованы как основа для дальнейших аналитических исследований дифференциальных игр с зависимостью возможностей игроков от фазового положения системы, а также для разработки численных методов решения таких задач.

AB - Работа посвящена аналитическому построению множеств разрешимости (максимальных стабильных мостов) в двух примерах антагонистических дифференциальных игр. В первом примере управляемая система описывается динамикой простых движений. Сечения множеств разрешимости в заданный момент времени определяются на основе терминального множества и множеств, ограничивающих управления игроков, с помощью операций алгебраической суммы и геометрической разности. Доказательство проводится при помощи явного построения оптимальных стратегий игроков. Во втором примере рассматривается система с модифицированной динамикой, при которой возможности второго игрока зависят от фазового положения системы. Исследование проводится при помощи характеристической системы уравнения Гамильтона – Якоби – Айзекса. Выделены условия на параметры задачи, при которых граница множества разрешимости является гладкой. Для остальных значений параметров найдена качественная картина решения, которая аналогична решению в первом примере и обладает рассеивающей линией. Полученные результаты могут быть использованы как основа для дальнейших аналитических исследований дифференциальных игр с зависимостью возможностей игроков от фазового положения системы, а также для разработки численных методов решения таких задач.

KW - Математика

M3 - Магистерская диссертация

ER -