Abstract

В работе изучается процесс торможения диска в виде дифференциальной игры. В основу динамической модели положена кулоновская модель трения. Исследуется вопрос существования цены игры при постоянных управлениях игроков при различных значениях начальных скоростей и параметров диска. Критерием качества здесь выбран критерий минимизации тормозного пути. Для каждого из рассмотренных случаев исследуются гарантии первого и второго игрока, и по итогам исследования формулируется утверждение о существовании цены игры или ее отсутствии. Так, например, показано, что в случае торможения без проскальзывания цена игры существует и достигается, когда первый игрок прикладывает максимально допустимое управление, позволяющее ему не проскальзывать, а второй при этом минимизирует трение. В заключение доказывается итоговая теорема о том, что режим без проскальзывания является наилучшим режимом торможения для первого игрока при постоянных управлениях.
Translated title of the contributionAnalysis of a game problem of braking a disk in the case of constant controls
Original languageRussian
Pages (from-to)93-107
Number of pages15
JournalТруды института математики и механики УрО РАН
Volume25
Issue number1
DOIs
Publication statusPublished - 2019

Fingerprint

Slip
Game
Minimise
Coulomb Friction
Differential Games
Nonexistence
Dynamic Systems
Friction
Theorem
Model
Form

Keywords

  • optimal braking
  • antagonistic braking
  • differential game

WoS ResearchAreas Categories

  • Mathematics, Applied

GRNTI

  • 27.00.00 MATHEMATICS

Level of Research Output

  • VAK List

Cite this

@article{b4301f59fc434ca3a1bc4d8737e5b01a,
title = "ИССЛЕДОВАНИЕ ИГРОВОЙ ЗАДАЧИ ТОРМОЖЕНИЯ ДИСКА В СЛУЧАЕ ПОСТОЯННЫХ УПРАВЛЕНИЙ",
abstract = "В работе изучается процесс торможения диска в виде дифференциальной игры. В основу динамической модели положена кулоновская модель трения. Исследуется вопрос существования цены игры при постоянных управлениях игроков при различных значениях начальных скоростей и параметров диска. Критерием качества здесь выбран критерий минимизации тормозного пути. Для каждого из рассмотренных случаев исследуются гарантии первого и второго игрока, и по итогам исследования формулируется утверждение о существовании цены игры или ее отсутствии. Так, например, показано, что в случае торможения без проскальзывания цена игры существует и достигается, когда первый игрок прикладывает максимально допустимое управление, позволяющее ему не проскальзывать, а второй при этом минимизирует трение. В заключение доказывается итоговая теорема о том, что режим без проскальзывания является наилучшим режимом торможения для первого игрока при постоянных управлениях.",
keywords = "optimal braking, antagonistic braking, differential game",
author = "Ламоткин, {Алексей Евгеньевич} and Осипов, {Сергей Иванович}",
year = "2019",
doi = "10.21538/0134-4889-2019-25-1-93-107",
language = "Русский",
volume = "25",
pages = "93--107",
journal = "Труды института математики и механики УрО РАН",
issn = "0134-4889",
publisher = "Институт математики и механики им. Н.Н. Красовского УрО РАН",
number = "1",

}

TY - JOUR

T1 - ИССЛЕДОВАНИЕ ИГРОВОЙ ЗАДАЧИ ТОРМОЖЕНИЯ ДИСКА В СЛУЧАЕ ПОСТОЯННЫХ УПРАВЛЕНИЙ

AU - Ламоткин, Алексей Евгеньевич

AU - Осипов, Сергей Иванович

PY - 2019

Y1 - 2019

N2 - В работе изучается процесс торможения диска в виде дифференциальной игры. В основу динамической модели положена кулоновская модель трения. Исследуется вопрос существования цены игры при постоянных управлениях игроков при различных значениях начальных скоростей и параметров диска. Критерием качества здесь выбран критерий минимизации тормозного пути. Для каждого из рассмотренных случаев исследуются гарантии первого и второго игрока, и по итогам исследования формулируется утверждение о существовании цены игры или ее отсутствии. Так, например, показано, что в случае торможения без проскальзывания цена игры существует и достигается, когда первый игрок прикладывает максимально допустимое управление, позволяющее ему не проскальзывать, а второй при этом минимизирует трение. В заключение доказывается итоговая теорема о том, что режим без проскальзывания является наилучшим режимом торможения для первого игрока при постоянных управлениях.

AB - В работе изучается процесс торможения диска в виде дифференциальной игры. В основу динамической модели положена кулоновская модель трения. Исследуется вопрос существования цены игры при постоянных управлениях игроков при различных значениях начальных скоростей и параметров диска. Критерием качества здесь выбран критерий минимизации тормозного пути. Для каждого из рассмотренных случаев исследуются гарантии первого и второго игрока, и по итогам исследования формулируется утверждение о существовании цены игры или ее отсутствии. Так, например, показано, что в случае торможения без проскальзывания цена игры существует и достигается, когда первый игрок прикладывает максимально допустимое управление, позволяющее ему не проскальзывать, а второй при этом минимизирует трение. В заключение доказывается итоговая теорема о том, что режим без проскальзывания является наилучшим режимом торможения для первого игрока при постоянных управлениях.

KW - optimal braking

KW - antagonistic braking

KW - differential game

UR - https://elibrary.ru/item.asp?id=37051096

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000470956900008

U2 - 10.21538/0134-4889-2019-25-1-93-107

DO - 10.21538/0134-4889-2019-25-1-93-107

M3 - Статья

VL - 25

SP - 93

EP - 107

JO - Труды института математики и механики УрО РАН

JF - Труды института математики и механики УрО РАН

SN - 0134-4889

IS - 1

ER -