The programmed iterations method in a game problem of guidance

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Рассматривается решение дифференциальной игры сближения-уклонения с использованием метода программных итераций. Основная цель состоит в построении множества позиционного поглощения, соответствующего разбиению пространства позиций игры, отвечающему фундаментальной теореме об альтернативе Н.Н. Красовского, А.И. Субботина. Для построения используется оператор программного поглощения, определяемый целевым множеством в задаче о сближении. Множество, формирующее фазовые ограничения, поэтапно преобразуется упомянутым оператором, реализуя последовательность, предел которой совпадает с множеством позиционного поглощения. Предполагается, что целевое множество замкнуто, а множество, определяющее фазовые ограничения исходной задачи, имеет замкнутые сечения, каждое из которых соответствует фиксации момента времени. Установлены свойства, имеющие смысл односторонней непрерывности множества позиционного поглощения при изменении множеств, определяющих исходную дифференциальную игру. Показано, что предел итерационной процедуры совпадает с множеством успешной разрешимости в классе многозначных обобщенных квазистратегий.
Translated title of the contributionThe programmed iterations method in a game problem of guidance
Original languageRussian
Pages (from-to)271-282
Number of pages12
JournalВестник Удмуртского университета. Математика. Механика. Компьютерные науки
Volume26
Issue number2
DOIs
Publication statusPublished - 2016

Fingerprint

Iteration Method
Guidance
Game
Absorption
Differential Games
Alternative Theorems
Closed
Target
Fixation
Operator
Solvability
Partition
Alternatives

Keywords

  • Differential game
  • Programmed iterations method
  • Set of positional absorption

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Computer Science(all)
  • Mathematics(all)

Level of Research Output

  • VAK List

Cite this

@article{ec769d76f6724990834a806c86413b1f,
title = "Метод программных итераций в игровой задаче наведения",
abstract = "Рассматривается решение дифференциальной игры сближения-уклонения с использованием метода программных итераций. Основная цель состоит в построении множества позиционного поглощения, соответствующего разбиению пространства позиций игры, отвечающему фундаментальной теореме об альтернативе Н.Н. Красовского, А.И. Субботина. Для построения используется оператор программного поглощения, определяемый целевым множеством в задаче о сближении. Множество, формирующее фазовые ограничения, поэтапно преобразуется упомянутым оператором, реализуя последовательность, предел которой совпадает с множеством позиционного поглощения. Предполагается, что целевое множество замкнуто, а множество, определяющее фазовые ограничения исходной задачи, имеет замкнутые сечения, каждое из которых соответствует фиксации момента времени. Установлены свойства, имеющие смысл односторонней непрерывности множества позиционного поглощения при изменении множеств, определяющих исходную дифференциальную игру. Показано, что предел итерационной процедуры совпадает с множеством успешной разрешимости в классе многозначных обобщенных квазистратегий.",
keywords = "Differential game, Programmed iterations method, Set of positional absorption",
author = "Chentsov, {A. G.}",
year = "2016",
doi = "10.20537/vm160213",
language = "Русский",
volume = "26",
pages = "271--282",
journal = "Вестник Удмуртского университета. Математика. Механика. Компьютерные науки",
issn = "1994-9197",
publisher = "Удмуртский государственный университет",
number = "2",

}

TY - JOUR

T1 - Метод программных итераций в игровой задаче наведения

AU - Chentsov, A. G.

PY - 2016

Y1 - 2016

N2 - Рассматривается решение дифференциальной игры сближения-уклонения с использованием метода программных итераций. Основная цель состоит в построении множества позиционного поглощения, соответствующего разбиению пространства позиций игры, отвечающему фундаментальной теореме об альтернативе Н.Н. Красовского, А.И. Субботина. Для построения используется оператор программного поглощения, определяемый целевым множеством в задаче о сближении. Множество, формирующее фазовые ограничения, поэтапно преобразуется упомянутым оператором, реализуя последовательность, предел которой совпадает с множеством позиционного поглощения. Предполагается, что целевое множество замкнуто, а множество, определяющее фазовые ограничения исходной задачи, имеет замкнутые сечения, каждое из которых соответствует фиксации момента времени. Установлены свойства, имеющие смысл односторонней непрерывности множества позиционного поглощения при изменении множеств, определяющих исходную дифференциальную игру. Показано, что предел итерационной процедуры совпадает с множеством успешной разрешимости в классе многозначных обобщенных квазистратегий.

AB - Рассматривается решение дифференциальной игры сближения-уклонения с использованием метода программных итераций. Основная цель состоит в построении множества позиционного поглощения, соответствующего разбиению пространства позиций игры, отвечающему фундаментальной теореме об альтернативе Н.Н. Красовского, А.И. Субботина. Для построения используется оператор программного поглощения, определяемый целевым множеством в задаче о сближении. Множество, формирующее фазовые ограничения, поэтапно преобразуется упомянутым оператором, реализуя последовательность, предел которой совпадает с множеством позиционного поглощения. Предполагается, что целевое множество замкнуто, а множество, определяющее фазовые ограничения исходной задачи, имеет замкнутые сечения, каждое из которых соответствует фиксации момента времени. Установлены свойства, имеющие смысл односторонней непрерывности множества позиционного поглощения при изменении множеств, определяющих исходную дифференциальную игру. Показано, что предел итерационной процедуры совпадает с множеством успешной разрешимости в классе многозначных обобщенных квазистратегий.

KW - Differential game

KW - Programmed iterations method

KW - Set of positional absorption

UR - http://www.scopus.com/inward/record.url?scp=85009818538&partnerID=8YFLogxK

UR - http://elibrary.ru/item.asp?id=26244786

U2 - 10.20537/vm160213

DO - 10.20537/vm160213

M3 - Статья

VL - 26

SP - 271

EP - 282

JO - Вестник Удмуртского университета. Математика. Механика. Компьютерные науки

JF - Вестник Удмуртского университета. Математика. Механика. Компьютерные науки

SN - 1994-9197

IS - 2

ER -