Abstract

Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.
Translated title of the contributionSome representations of free ultrafilters
Original languageRussian
Pages (from-to)345-365
Number of pages21
JournalВестник Удмуртского университета. Математика. Механика. Компьютерные науки
Volume26
Issue number3
DOIs
Publication statusPublished - 2016

Fingerprint

Ultrafilter
Topology
Sigma algebra
Algebra
Countable
Multiplicative
Uniqueness
Finitely Additive Measure
Measurable space
Borel Measure
Remainder
Closed set
Open set
Paul Adrien Maurice Dirac
Replacement
Closure
Filter

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Computer Science(all)
  • Mathematics(all)

Level of Research Output

  • VAK List

Cite this

@article{b2a6adaefa7d48168062fddda74e24f6,
title = "Некоторые представления свободных ультрафильтров",
abstract = "Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.",
author = "Pytkeev, {E. G.} and Chentsov, {A. G.}",
year = "2016",
doi = "10.20537/vm160305",
language = "Русский",
volume = "26",
pages = "345--365",
journal = "Вестник Удмуртского университета. Математика. Механика. Компьютерные науки",
issn = "1994-9197",
publisher = "Удмуртский государственный университет",
number = "3",

}

TY - JOUR

T1 - Некоторые представления свободных ультрафильтров

AU - Pytkeev, E. G.

AU - Chentsov, A. G.

PY - 2016

Y1 - 2016

N2 - Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.

AB - Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.

UR - http://www.scopus.com/inward/record.url?scp=85009802311&partnerID=8YFLogxK

UR - http://elibrary.ru/item.asp?id=26726582

U2 - 10.20537/vm160305

DO - 10.20537/vm160305

M3 - Статья

VL - 26

SP - 345

EP - 365

JO - Вестник Удмуртского университета. Математика. Механика. Компьютерные науки

JF - Вестник Удмуртского университета. Математика. Механика. Компьютерные науки

SN - 1994-9197

IS - 3

ER -