Approximation of minimax solutions to Hamilton Jacobi functional equations for delay systems

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Рассматривается минимаксное решение задачи Коши для функционального уравнения Гамильтона - Якоби с коинвариантными производными с условием на правом конце. Уравнения Гамильтона - Якоби рассматриваемого вида возникают в задачах динамической оптимизации систем с запаздыванием. Их аппроксимация сопряжена с дополнительными вопросами корректного перехода от бесконечномерного функционального аргумента искомого решения к конечномерному. Ранее изучались аппроксимации, основанные на кусочно-линейном приближении функционального аргумента и свойствах корректности минимаксных решений. В данной статье предложена и обоснована схема аппроксимации функциональных уравнений Гамильтона - Якоби с коинвариантными производными обычными уравнениями Гамильтона - Якоби с частными производными, которая основана на аппроксимации характеристических функционально-дифференциальных включений, используемых при определении искомого минимаксного решения, при помощи обыкновенных дифференциальных включений.
Translated title of the contributionApproximation of minimax solutions to Hamilton Jacobi functional equations for delay systems
Original languageRussian
Pages (from-to)53-62
Number of pages10
JournalТруды института математики и механики УрО РАН
Volume24
Issue number1
DOIs
Publication statusPublished - 2018

Keywords

  • Hamilton Jacobi equations
  • generalized solutions
  • coinvariant derivatives
  • finite-dimensional approximations
  • time-delay systems

WoS ResearchAreas Categories

  • Mathematics, Applied

GRNTI

  • 27.00.00 MATHEMATICS

Level of Research Output

  • VAK List

Cite this

@article{f0127dc85c97442aab5b96b9431ac5b3,
title = "ОБ АППРОКСИМАЦИИ МИНИМАКСНЫХ РЕШЕНИЙ ФУНКЦИОНАЛЬНЫХ УРАВНЕНИЙ ГАМИЛЬТОНА-ЯКОБИ ДЛЯ СИСТЕМ С ЗАПАЗДЫВАНИЕМ",
abstract = "Рассматривается минимаксное решение задачи Коши для функционального уравнения Гамильтона - Якоби с коинвариантными производными с условием на правом конце. Уравнения Гамильтона - Якоби рассматриваемого вида возникают в задачах динамической оптимизации систем с запаздыванием. Их аппроксимация сопряжена с дополнительными вопросами корректного перехода от бесконечномерного функционального аргумента искомого решения к конечномерному. Ранее изучались аппроксимации, основанные на кусочно-линейном приближении функционального аргумента и свойствах корректности минимаксных решений. В данной статье предложена и обоснована схема аппроксимации функциональных уравнений Гамильтона - Якоби с коинвариантными производными обычными уравнениями Гамильтона - Якоби с частными производными, которая основана на аппроксимации характеристических функционально-дифференциальных включений, используемых при определении искомого минимаксного решения, при помощи обыкновенных дифференциальных включений.",
keywords = "Hamilton Jacobi equations, generalized solutions, coinvariant derivatives, finite-dimensional approximations, time-delay systems",
author = "Gomoyunov, {Mikhail Igorevich} and Lukoyanov, {Nikolai Yur'evich} and Plaksin, {Anton Romanovich}",
year = "2018",
doi = "10.21538/0134-4889-2018-24-1-53-62",
language = "Русский",
volume = "24",
pages = "53--62",
journal = "Труды института математики и механики УрО РАН",
issn = "0134-4889",
publisher = "Институт математики и механики им. Н.Н. Красовского УрО РАН",
number = "1",

}

TY - JOUR

T1 - ОБ АППРОКСИМАЦИИ МИНИМАКСНЫХ РЕШЕНИЙ ФУНКЦИОНАЛЬНЫХ УРАВНЕНИЙ ГАМИЛЬТОНА-ЯКОБИ ДЛЯ СИСТЕМ С ЗАПАЗДЫВАНИЕМ

AU - Gomoyunov, Mikhail Igorevich

AU - Lukoyanov, Nikolai Yur'evich

AU - Plaksin, Anton Romanovich

PY - 2018

Y1 - 2018

N2 - Рассматривается минимаксное решение задачи Коши для функционального уравнения Гамильтона - Якоби с коинвариантными производными с условием на правом конце. Уравнения Гамильтона - Якоби рассматриваемого вида возникают в задачах динамической оптимизации систем с запаздыванием. Их аппроксимация сопряжена с дополнительными вопросами корректного перехода от бесконечномерного функционального аргумента искомого решения к конечномерному. Ранее изучались аппроксимации, основанные на кусочно-линейном приближении функционального аргумента и свойствах корректности минимаксных решений. В данной статье предложена и обоснована схема аппроксимации функциональных уравнений Гамильтона - Якоби с коинвариантными производными обычными уравнениями Гамильтона - Якоби с частными производными, которая основана на аппроксимации характеристических функционально-дифференциальных включений, используемых при определении искомого минимаксного решения, при помощи обыкновенных дифференциальных включений.

AB - Рассматривается минимаксное решение задачи Коши для функционального уравнения Гамильтона - Якоби с коинвариантными производными с условием на правом конце. Уравнения Гамильтона - Якоби рассматриваемого вида возникают в задачах динамической оптимизации систем с запаздыванием. Их аппроксимация сопряжена с дополнительными вопросами корректного перехода от бесконечномерного функционального аргумента искомого решения к конечномерному. Ранее изучались аппроксимации, основанные на кусочно-линейном приближении функционального аргумента и свойствах корректности минимаксных решений. В данной статье предложена и обоснована схема аппроксимации функциональных уравнений Гамильтона - Якоби с коинвариантными производными обычными уравнениями Гамильтона - Якоби с частными производными, которая основана на аппроксимации характеристических функционально-дифференциальных включений, используемых при определении искомого минимаксного решения, при помощи обыкновенных дифференциальных включений.

KW - Hamilton Jacobi equations

KW - generalized solutions

KW - coinvariant derivatives

KW - finite-dimensional approximations

KW - time-delay systems

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000436169800005

UR - https://elibrary.ru/item.asp?id=32604044

U2 - 10.21538/0134-4889-2018-24-1-53-62

DO - 10.21538/0134-4889-2018-24-1-53-62

M3 - Статья

VL - 24

SP - 53

EP - 62

JO - Труды института математики и механики УрО РАН

JF - Труды института математики и механики УрО РАН

SN - 0134-4889

IS - 1

ER -