Optimizing multi-inserts in routing problems with constraints

Александр Георгиевич Ченцов, Алексей Михайлович Григорьев

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Рассматривается задача последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и функциями стоимости, зависящими от списка заданий. Постановка ориентирована на инженерные задачи, возникающие в атомной энергетике и связанные со снижением облучаемости работников, а также в машиностроении (маршрутизация движения инструмента при листовой резке на машинах с ЧПУ). Предполагается, что исследуемая задача дискретной оптимизации имеет ощутимую размерность, что вынуждает к использованию эвристик. Обсуждается процедура локального улучшения качества последних посредством применения оптимизирующих мультивставок, определяемых всякий раз в виде конечного дизъюнктного набора вставок. Предполагается, что в каждой вставке используется процедура оптимизации на основе широко понимаемого динамического программирования. Показано, что в «аддитивной» маршрутной задаче вышеупомянутого типа (с ограничениями и усложненными функциями стоимости) улучшения достигаемого результата также агрегируются аддитивно. Предлагаемая конструкция допускает реализацию в виде параллельной процедуры с использованием МВС; при этом отдельные вставки выделяются вычислительным узлам и формируются независимо.
Translated title of the contributionOptimizing multi-inserts in routing problems with constraints
Original languageRussian
Pages (from-to)513-530
JournalВестник Удмуртского университета. Математика. Механика. Компьютерные науки
DOIs
Publication statusPublished - 2018

Fingerprint

Precedence Constraints
Routing Problem
Cost functions
Cost Function
Heuristics
Engineering
Discrete Optimization
Machine Tool
Multiprocessor Systems
Cutting tools
Parallel Implementation
Dynamic programming
Machine tools
Power generation
Dynamic Programming
Finite Set
Disjoint
Routing
Radiation
Optimization Problem

ASJC Scopus subject areas

  • Computer Science(all)
  • Mathematics(all)
  • Fluid Flow and Transfer Processes

WoS ResearchAreas Categories

  • Mathematics

GRNTI

  • 27.00.00 MATHEMATICS

Level of Research Output

  • VAK List

Cite this

@article{a8a0432c93a84782a7f55107ef5e3ce5,
title = "ОПТИМИЗИРУЮЩИЕ МУЛЬТИВСТАВКИ В ЗАДАЧАХ МАРШРУТИЗАЦИИ С ОГРАНИЧЕНИЯМИ",
abstract = "Рассматривается задача последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и функциями стоимости, зависящими от списка заданий. Постановка ориентирована на инженерные задачи, возникающие в атомной энергетике и связанные со снижением облучаемости работников, а также в машиностроении (маршрутизация движения инструмента при листовой резке на машинах с ЧПУ). Предполагается, что исследуемая задача дискретной оптимизации имеет ощутимую размерность, что вынуждает к использованию эвристик. Обсуждается процедура локального улучшения качества последних посредством применения оптимизирующих мультивставок, определяемых всякий раз в виде конечного дизъюнктного набора вставок. Предполагается, что в каждой вставке используется процедура оптимизации на основе широко понимаемого динамического программирования. Показано, что в «аддитивной» маршрутной задаче вышеупомянутого типа (с ограничениями и усложненными функциями стоимости) улучшения достигаемого результата также агрегируются аддитивно. Предлагаемая конструкция допускает реализацию в виде параллельной процедуры с использованием МВС; при этом отдельные вставки выделяются вычислительным узлам и формируются независимо.",
author = "Ченцов, {Александр Георгиевич} and Григорьев, {Алексей Михайлович}",
year = "2018",
doi = "10.20537/vm180406",
language = "Русский",
pages = "513--530",
journal = "Вестник Удмуртского университета. Математика. Механика. Компьютерные науки",
issn = "1994-9197",
publisher = "Удмуртский государственный университет",

}

TY - JOUR

T1 - ОПТИМИЗИРУЮЩИЕ МУЛЬТИВСТАВКИ В ЗАДАЧАХ МАРШРУТИЗАЦИИ С ОГРАНИЧЕНИЯМИ

AU - Ченцов, Александр Георгиевич

AU - Григорьев, Алексей Михайлович

PY - 2018

Y1 - 2018

N2 - Рассматривается задача последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и функциями стоимости, зависящими от списка заданий. Постановка ориентирована на инженерные задачи, возникающие в атомной энергетике и связанные со снижением облучаемости работников, а также в машиностроении (маршрутизация движения инструмента при листовой резке на машинах с ЧПУ). Предполагается, что исследуемая задача дискретной оптимизации имеет ощутимую размерность, что вынуждает к использованию эвристик. Обсуждается процедура локального улучшения качества последних посредством применения оптимизирующих мультивставок, определяемых всякий раз в виде конечного дизъюнктного набора вставок. Предполагается, что в каждой вставке используется процедура оптимизации на основе широко понимаемого динамического программирования. Показано, что в «аддитивной» маршрутной задаче вышеупомянутого типа (с ограничениями и усложненными функциями стоимости) улучшения достигаемого результата также агрегируются аддитивно. Предлагаемая конструкция допускает реализацию в виде параллельной процедуры с использованием МВС; при этом отдельные вставки выделяются вычислительным узлам и формируются независимо.

AB - Рассматривается задача последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и функциями стоимости, зависящими от списка заданий. Постановка ориентирована на инженерные задачи, возникающие в атомной энергетике и связанные со снижением облучаемости работников, а также в машиностроении (маршрутизация движения инструмента при листовой резке на машинах с ЧПУ). Предполагается, что исследуемая задача дискретной оптимизации имеет ощутимую размерность, что вынуждает к использованию эвристик. Обсуждается процедура локального улучшения качества последних посредством применения оптимизирующих мультивставок, определяемых всякий раз в виде конечного дизъюнктного набора вставок. Предполагается, что в каждой вставке используется процедура оптимизации на основе широко понимаемого динамического программирования. Показано, что в «аддитивной» маршрутной задаче вышеупомянутого типа (с ограничениями и усложненными функциями стоимости) улучшения достигаемого результата также агрегируются аддитивно. Предлагаемая конструкция допускает реализацию в виде параллельной процедуры с использованием МВС; при этом отдельные вставки выделяются вычислительным узлам и формируются независимо.

UR - https://elibrary.ru/item.asp?id=36873367

UR - http://www.scopus.com/inward/record.url?scp=85062716372&partnerID=8YFLogxK

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000467766800006

U2 - 10.20537/vm180406

DO - 10.20537/vm180406

M3 - Статья

SP - 513

EP - 530

JO - Вестник Удмуртского университета. Математика. Механика. Компьютерные науки

JF - Вестник Удмуртского университета. Математика. Механика. Компьютерные науки

SN - 1994-9197

ER -