Heat exchange block for regenerative burner

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Современные регенеративные горелки нагревательных и термических печей имеют достаточно большие размеры и малое время перекидки, что связано с низкой теплоемкостью огнеупорных материалов, применяемых для изготовления насадки. Большие габариты регенеративных горелок затрудняют их применение на нагревательных и термических печах, а малое время перекидок приводит к снижению срока эксплуатации перекидных клапанов. Существенно уменьшить размеры насадки и увеличить при этом время перекидки позволяет использование скрытой теплоты плавления металлов, которая на порядок выше теплоемкости керамики, из которой изготавливают насадку в современных рекуперативных горелках. В предлагаемом техническом решении рекомендуется использовать тонкостенные емкости, в которые помещаются металлы с различной теплотой плавления. Из таких емкостей набираются блоки, в которых температура плавления металла, заполняющего емкости, одинакова, а в соседних блоках отличается примерно на 100 °С. Как известно, при плавлении металлов их температура остается постоянной, поскольку вся подводимая к металлу теплота расходуется на плавление. Это позволяет поддерживать постоянную температуру секции, удерживая ее равной температуре плавления металла в данной секции, снимая с ее поверхности нагреваемым воздухом теплоту или отдавая поверхности теплоту продуктов сгорания, выделяющуюся при кристаллизации или поглощаемую при плавлении металлического ядра. Расчет времени перекидки и массы металла в одной секции, основанный на совместном решении уравнений теплового баланса и теплообмена между нагреваемым воздухом и поверхностью емкостей, позволяет определить габаритные размеры каждой секции, заполненной плавящимся или кристаллизующимся металлом и ее теплообменную поверхность. В данной работе приведен расчет массы плавкого ядра, размеров секции и времени перекидки регенеративного блока, состоящего из десяти секций с плавким ядром. Расчет обосновывает возможность снижения габаритов регенеративной насадки для горелки мощностью 200 кВт и увеличение времени перекидки, причем температура подогрева воздуха остается постоянной. Кроме того, в работе предложена конструкция секции и теплообменного блока, которые позволяют решить задачу уменьшения размеров регенеративного блока и увеличения времени перекидки по сравнению с существующими регенераторами, используемыми для нагрева воздуха в регенеративных горелках. Предлагаемая конструкция может быть использована для создания регенеративных горелок нового класса, обладающих высокой эффективностью, высокой температурой подогрева воздуха и значительным временем перекидки.
Translated title of the contributionHeat exchange block for regenerative burner
Original languageRussian
Pages (from-to)643-650
Number of pages8
JournalIzvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya
Volume60
Issue number8
DOIs
Publication statusPublished - 1 Jan 2017

Fingerprint

Fuel burners
Metal melting
Metals
Heating
Nozzles
Air
Furnaces
Temperature
Hot Temperature
Regenerators
Preheating
Crystallization
Refractory materials
Specific heat
Containers
Byproducts
Melting point
Melting
Fusion reactions
Heat transfer

Keywords

  • Fusible kernel
  • Fusible nozzle
  • Heat exchange device
  • Heat utilization
  • Hidden warmth of melting
  • Regenerative burner
  • Regenerator

ASJC Scopus subject areas

  • Materials Science (miscellaneous)
  • Metals and Alloys

GRNTI

  • 44.31.00

Level of Research Output

  • VAK List

Cite this

@article{1b0ec49e99344d828bf19d170997e28a,
title = "ТЕПЛООБМЕННЫЙ БЛОК ДЛЯ РЕГЕНЕРАТИВНОЙ ГОРЕЛКИ",
abstract = "Современные регенеративные горелки нагревательных и термических печей имеют достаточно большие размеры и малое время перекидки, что связано с низкой теплоемкостью огнеупорных материалов, применяемых для изготовления насадки. Большие габариты регенеративных горелок затрудняют их применение на нагревательных и термических печах, а малое время перекидок приводит к снижению срока эксплуатации перекидных клапанов. Существенно уменьшить размеры насадки и увеличить при этом время перекидки позволяет использование скрытой теплоты плавления металлов, которая на порядок выше теплоемкости керамики, из которой изготавливают насадку в современных рекуперативных горелках. В предлагаемом техническом решении рекомендуется использовать тонкостенные емкости, в которые помещаются металлы с различной теплотой плавления. Из таких емкостей набираются блоки, в которых температура плавления металла, заполняющего емкости, одинакова, а в соседних блоках отличается примерно на 100 °С. Как известно, при плавлении металлов их температура остается постоянной, поскольку вся подводимая к металлу теплота расходуется на плавление. Это позволяет поддерживать постоянную температуру секции, удерживая ее равной температуре плавления металла в данной секции, снимая с ее поверхности нагреваемым воздухом теплоту или отдавая поверхности теплоту продуктов сгорания, выделяющуюся при кристаллизации или поглощаемую при плавлении металлического ядра. Расчет времени перекидки и массы металла в одной секции, основанный на совместном решении уравнений теплового баланса и теплообмена между нагреваемым воздухом и поверхностью емкостей, позволяет определить габаритные размеры каждой секции, заполненной плавящимся или кристаллизующимся металлом и ее теплообменную поверхность. В данной работе приведен расчет массы плавкого ядра, размеров секции и времени перекидки регенеративного блока, состоящего из десяти секций с плавким ядром. Расчет обосновывает возможность снижения габаритов регенеративной насадки для горелки мощностью 200 кВт и увеличение времени перекидки, причем температура подогрева воздуха остается постоянной. Кроме того, в работе предложена конструкция секции и теплообменного блока, которые позволяют решить задачу уменьшения размеров регенеративного блока и увеличения времени перекидки по сравнению с существующими регенераторами, используемыми для нагрева воздуха в регенеративных горелках. Предлагаемая конструкция может быть использована для создания регенеративных горелок нового класса, обладающих высокой эффективностью, высокой температурой подогрева воздуха и значительным временем перекидки.",
keywords = "Fusible kernel, Fusible nozzle, Heat exchange device, Heat utilization, Hidden warmth of melting, Regenerative burner, Regenerator",
author = "Druzhinin, {G. M.} and Loshkarev, {N. B.} and Loshkarev, {A. N.} and Mukhamadieva, {A. Kh} and Muksinov, {D. F.}",
year = "2017",
month = "1",
day = "1",
doi = "10.17073/0368-0797-2017-8-643-650",
language = "Русский",
volume = "60",
pages = "643--650",
journal = "Известия высших учебных заведений. Черная металлургия",
issn = "0368-0797",
publisher = "Национальный исследовательский технологический университет МИСиС",
number = "8",

}

TY - JOUR

T1 - ТЕПЛООБМЕННЫЙ БЛОК ДЛЯ РЕГЕНЕРАТИВНОЙ ГОРЕЛКИ

AU - Druzhinin, G. M.

AU - Loshkarev, N. B.

AU - Loshkarev, A. N.

AU - Mukhamadieva, A. Kh

AU - Muksinov, D. F.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Современные регенеративные горелки нагревательных и термических печей имеют достаточно большие размеры и малое время перекидки, что связано с низкой теплоемкостью огнеупорных материалов, применяемых для изготовления насадки. Большие габариты регенеративных горелок затрудняют их применение на нагревательных и термических печах, а малое время перекидок приводит к снижению срока эксплуатации перекидных клапанов. Существенно уменьшить размеры насадки и увеличить при этом время перекидки позволяет использование скрытой теплоты плавления металлов, которая на порядок выше теплоемкости керамики, из которой изготавливают насадку в современных рекуперативных горелках. В предлагаемом техническом решении рекомендуется использовать тонкостенные емкости, в которые помещаются металлы с различной теплотой плавления. Из таких емкостей набираются блоки, в которых температура плавления металла, заполняющего емкости, одинакова, а в соседних блоках отличается примерно на 100 °С. Как известно, при плавлении металлов их температура остается постоянной, поскольку вся подводимая к металлу теплота расходуется на плавление. Это позволяет поддерживать постоянную температуру секции, удерживая ее равной температуре плавления металла в данной секции, снимая с ее поверхности нагреваемым воздухом теплоту или отдавая поверхности теплоту продуктов сгорания, выделяющуюся при кристаллизации или поглощаемую при плавлении металлического ядра. Расчет времени перекидки и массы металла в одной секции, основанный на совместном решении уравнений теплового баланса и теплообмена между нагреваемым воздухом и поверхностью емкостей, позволяет определить габаритные размеры каждой секции, заполненной плавящимся или кристаллизующимся металлом и ее теплообменную поверхность. В данной работе приведен расчет массы плавкого ядра, размеров секции и времени перекидки регенеративного блока, состоящего из десяти секций с плавким ядром. Расчет обосновывает возможность снижения габаритов регенеративной насадки для горелки мощностью 200 кВт и увеличение времени перекидки, причем температура подогрева воздуха остается постоянной. Кроме того, в работе предложена конструкция секции и теплообменного блока, которые позволяют решить задачу уменьшения размеров регенеративного блока и увеличения времени перекидки по сравнению с существующими регенераторами, используемыми для нагрева воздуха в регенеративных горелках. Предлагаемая конструкция может быть использована для создания регенеративных горелок нового класса, обладающих высокой эффективностью, высокой температурой подогрева воздуха и значительным временем перекидки.

AB - Современные регенеративные горелки нагревательных и термических печей имеют достаточно большие размеры и малое время перекидки, что связано с низкой теплоемкостью огнеупорных материалов, применяемых для изготовления насадки. Большие габариты регенеративных горелок затрудняют их применение на нагревательных и термических печах, а малое время перекидок приводит к снижению срока эксплуатации перекидных клапанов. Существенно уменьшить размеры насадки и увеличить при этом время перекидки позволяет использование скрытой теплоты плавления металлов, которая на порядок выше теплоемкости керамики, из которой изготавливают насадку в современных рекуперативных горелках. В предлагаемом техническом решении рекомендуется использовать тонкостенные емкости, в которые помещаются металлы с различной теплотой плавления. Из таких емкостей набираются блоки, в которых температура плавления металла, заполняющего емкости, одинакова, а в соседних блоках отличается примерно на 100 °С. Как известно, при плавлении металлов их температура остается постоянной, поскольку вся подводимая к металлу теплота расходуется на плавление. Это позволяет поддерживать постоянную температуру секции, удерживая ее равной температуре плавления металла в данной секции, снимая с ее поверхности нагреваемым воздухом теплоту или отдавая поверхности теплоту продуктов сгорания, выделяющуюся при кристаллизации или поглощаемую при плавлении металлического ядра. Расчет времени перекидки и массы металла в одной секции, основанный на совместном решении уравнений теплового баланса и теплообмена между нагреваемым воздухом и поверхностью емкостей, позволяет определить габаритные размеры каждой секции, заполненной плавящимся или кристаллизующимся металлом и ее теплообменную поверхность. В данной работе приведен расчет массы плавкого ядра, размеров секции и времени перекидки регенеративного блока, состоящего из десяти секций с плавким ядром. Расчет обосновывает возможность снижения габаритов регенеративной насадки для горелки мощностью 200 кВт и увеличение времени перекидки, причем температура подогрева воздуха остается постоянной. Кроме того, в работе предложена конструкция секции и теплообменного блока, которые позволяют решить задачу уменьшения размеров регенеративного блока и увеличения времени перекидки по сравнению с существующими регенераторами, используемыми для нагрева воздуха в регенеративных горелках. Предлагаемая конструкция может быть использована для создания регенеративных горелок нового класса, обладающих высокой эффективностью, высокой температурой подогрева воздуха и значительным временем перекидки.

KW - Fusible kernel

KW - Fusible nozzle

KW - Heat exchange device

KW - Heat utilization

KW - Hidden warmth of melting

KW - Regenerative burner

KW - Regenerator

UR - http://www.scopus.com/inward/record.url?scp=85044203119&partnerID=8YFLogxK

UR - https://elibrary.ru/item.asp?id=29869570

U2 - 10.17073/0368-0797-2017-8-643-650

DO - 10.17073/0368-0797-2017-8-643-650

M3 - Статья

VL - 60

SP - 643

EP - 650

JO - Известия высших учебных заведений. Черная металлургия

JF - Известия высших учебных заведений. Черная металлургия

SN - 0368-0797

IS - 8

ER -