A new multistep method with optimized characteristics for initial and/or boundary value problems

Guo Hua Qiu, Chenglian Liu, T. E. Simos

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)
Original languageEnglish
Pages (from-to)119-148
Number of pages30
JournalJournal of Mathematical Chemistry
Volume57
Issue number1
DOIs
Publication statusPublished - 15 Jan 2019

Fingerprint

Multistep Methods
Two-step Method
Convergence of numerical methods
Error analysis
Boundary value problems
Differential equations
Boundary Value Problem
Derivatives
Interval of Periodicity
Phase-lag
Truncation Error
Comparative Analysis
Error Analysis
Stability Analysis
Differential equation
Derivative

Keywords

  • Derivative of the phase-lag
  • Hybrid
  • Initial value problems
  • Multistep
  • Oscillating solution
  • Phase-lag
  • Schrödinger equation
  • Symmetric
  • 65L05
  • PREDICTOR-CORRECTOR METHOD
  • NUMEROV-TYPE METHODS
  • SYMMETRIC 2-STEP METHOD
  • KUTTA-NYSTROM METHOD
  • TRIGONOMETRICALLY-FITTED FORMULAS
  • VANISHED PHASE-LAG
  • FINITE-DIFFERENCE PAIR
  • NUMERICAL-SOLUTION
  • Schrodinger equation
  • P-STABLE METHOD
  • EXPLICIT 4-STEP METHOD

ASJC Scopus subject areas

  • Chemistry(all)
  • Applied Mathematics

WoS ResearchAreas Categories

  • Chemistry, Multidisciplinary
  • Mathematics, Interdisciplinary Applications

Cite this

Qiu, Guo Hua ; Liu, Chenglian ; Simos, T. E. / A new multistep method with optimized characteristics for initial and/or boundary value problems. In: Journal of Mathematical Chemistry. 2019 ; Vol. 57, No. 1. pp. 119-148.
@article{d64173967ecf45029d18fa383d7e2832,
title = "A new multistep method with optimized characteristics for initial and/or boundary value problems",
keywords = "Derivative of the phase-lag, Hybrid, Initial value problems, Multistep, Oscillating solution, Phase-lag, Schr{\"o}dinger equation, Symmetric, 65L05, PREDICTOR-CORRECTOR METHOD, NUMEROV-TYPE METHODS, SYMMETRIC 2-STEP METHOD, KUTTA-NYSTROM METHOD, TRIGONOMETRICALLY-FITTED FORMULAS, VANISHED PHASE-LAG, FINITE-DIFFERENCE PAIR, NUMERICAL-SOLUTION, Schrodinger equation, P-STABLE METHOD, EXPLICIT 4-STEP METHOD",
author = "Qiu, {Guo Hua} and Chenglian Liu and Simos, {T. E.}",
year = "2019",
month = "1",
day = "15",
doi = "10.1007/s10910-018-0940-3",
language = "English",
volume = "57",
pages = "119--148",
journal = "Journal of Mathematical Chemistry",
issn = "0259-9791",
publisher = "Kluwer Academic Publishers",
number = "1",

}

A new multistep method with optimized characteristics for initial and/or boundary value problems. / Qiu, Guo Hua; Liu, Chenglian; Simos, T. E.

In: Journal of Mathematical Chemistry, Vol. 57, No. 1, 15.01.2019, p. 119-148.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - A new multistep method with optimized characteristics for initial and/or boundary value problems

AU - Qiu, Guo Hua

AU - Liu, Chenglian

AU - Simos, T. E.

PY - 2019/1/15

Y1 - 2019/1/15

KW - Derivative of the phase-lag

KW - Hybrid

KW - Initial value problems

KW - Multistep

KW - Oscillating solution

KW - Phase-lag

KW - Schrödinger equation

KW - Symmetric

KW - 65L05

KW - PREDICTOR-CORRECTOR METHOD

KW - NUMEROV-TYPE METHODS

KW - SYMMETRIC 2-STEP METHOD

KW - KUTTA-NYSTROM METHOD

KW - TRIGONOMETRICALLY-FITTED FORMULAS

KW - VANISHED PHASE-LAG

KW - FINITE-DIFFERENCE PAIR

KW - NUMERICAL-SOLUTION

KW - Schrodinger equation

KW - P-STABLE METHOD

KW - EXPLICIT 4-STEP METHOD

UR - http://www.scopus.com/inward/record.url?scp=85051732853&partnerID=8YFLogxK

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000456663400004

U2 - 10.1007/s10910-018-0940-3

DO - 10.1007/s10910-018-0940-3

M3 - Article

VL - 57

SP - 119

EP - 148

JO - Journal of Mathematical Chemistry

JF - Journal of Mathematical Chemistry

SN - 0259-9791

IS - 1

ER -