Algorithm for solving the linear inverse problem of finding magnetization in a rectangular parallelepiped

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Original languageEnglish
Title of host publicationInternational Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018
EditorsT.E. Simos, T.E. Simos, T.E. Simos, T.E. Simos, Ch. Tsitouras, T.E. Simos
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735418547
DOIs
Publication statusPublished - 24 Jul 2019
EventInternational Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018 - Rhodes, Greece
Duration: 13 Sep 201818 Sep 2018

Publication series

NameAIP Conference Proceedings
Volume2116
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

ConferenceInternational Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018
CountryGreece
CityRhodes
Period13/09/201818/09/2018

Fingerprint

parallelepipeds
inverse problem
magnetization
gradients
methodology
method

Keywords

  • inverse problem
  • parallel algorithm
  • Potential theory
  • stabilized biconjugate gradient method

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Plant Science
  • Physics and Astronomy(all)
  • Nature and Landscape Conservation

Cite this

Akimova, E. N., & Misilov, V. E. (2019). Algorithm for solving the linear inverse problem of finding magnetization in a rectangular parallelepiped. In T. E. Simos, T. E. Simos, T. E. Simos, T. E. Simos, C. Tsitouras, & T. E. Simos (Eds.), International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018 [390003] (AIP Conference Proceedings; Vol. 2116). American Institute of Physics Inc.. https://doi.org/10.1063/1.5114398
Akimova, Elena N. ; Misilov, Vladimir E. / Algorithm for solving the linear inverse problem of finding magnetization in a rectangular parallelepiped. International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. editor / T.E. Simos ; T.E. Simos ; T.E. Simos ; T.E. Simos ; Ch. Tsitouras ; T.E. Simos. American Institute of Physics Inc., 2019. (AIP Conference Proceedings).
@inproceedings{37b62a8be80747b482a0c9d1b0f02356,
title = "Algorithm for solving the linear inverse problem of finding magnetization in a rectangular parallelepiped",
keywords = "inverse problem, parallel algorithm, Potential theory, stabilized biconjugate gradient method",
author = "Akimova, {Elena N.} and Misilov, {Vladimir E.}",
year = "2019",
month = "7",
day = "24",
doi = "10.1063/1.5114398",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "T.E. Simos and T.E. Simos and T.E. Simos and T.E. Simos and Ch. Tsitouras and T.E. Simos",
booktitle = "International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018",
address = "United States",

}

Akimova, EN & Misilov, VE 2019, Algorithm for solving the linear inverse problem of finding magnetization in a rectangular parallelepiped. in TE Simos, TE Simos, TE Simos, TE Simos, C Tsitouras & TE Simos (eds), International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018., 390003, AIP Conference Proceedings, vol. 2116, American Institute of Physics Inc., International Conference on Numerical Analysis and Applied Mathematics 2018, ICNAAM 2018, Rhodes, Greece, 13/09/2018. https://doi.org/10.1063/1.5114398

Algorithm for solving the linear inverse problem of finding magnetization in a rectangular parallelepiped. / Akimova, Elena N.; Misilov, Vladimir E.

International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. ed. / T.E. Simos; T.E. Simos; T.E. Simos; T.E. Simos; Ch. Tsitouras; T.E. Simos. American Institute of Physics Inc., 2019. 390003 (AIP Conference Proceedings; Vol. 2116).

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

TY - GEN

T1 - Algorithm for solving the linear inverse problem of finding magnetization in a rectangular parallelepiped

AU - Akimova, Elena N.

AU - Misilov, Vladimir E.

PY - 2019/7/24

Y1 - 2019/7/24

KW - inverse problem

KW - parallel algorithm

KW - Potential theory

KW - stabilized biconjugate gradient method

UR - http://www.scopus.com/inward/record.url?scp=85069962939&partnerID=8YFLogxK

U2 - 10.1063/1.5114398

DO - 10.1063/1.5114398

M3 - Conference contribution

T3 - AIP Conference Proceedings

BT - International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Simos, T.E.

A2 - Tsitouras, Ch.

A2 - Simos, T.E.

PB - American Institute of Physics Inc.

ER -

Akimova EN, Misilov VE. Algorithm for solving the linear inverse problem of finding magnetization in a rectangular parallelepiped. In Simos TE, Simos TE, Simos TE, Simos TE, Tsitouras C, Simos TE, editors, International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018. American Institute of Physics Inc. 2019. 390003. (AIP Conference Proceedings). https://doi.org/10.1063/1.5114398