An efficient Hamiltonian numerical model for a fractional Klein–Gordon equation through weighted-shifted Grünwald differences

Ahmed S. Hendy, Jorge E. Macías-Díaz

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)
Original languageEnglish
Pages (from-to)1394-1412
Number of pages19
JournalJournal of Mathematical Chemistry
Volume57
Issue number5
DOIs
Publication statusPublished - 15 May 2019

Fingerprint

Hamiltonians
Klein-Gordon Equation
Energy Function
Numerical models
Fractional
Nonlinear Wave Equation
Difference Operator
Order of Convergence
Fractional Derivative
Wave equations
Existence and Uniqueness of Solutions
Mathematical operators
Initial conditions
Mathematical Model
Mathematical models
Derivatives
Numerical Results
Arbitrary
Estimate

Keywords

  • Convergence and stability
  • Fractional wave equation
  • Hamiltonian numerical model
  • Riesz space-fractional equations
  • Weighted and shifted Grünwald differences
  • SYSTEMS
  • CONSERVATION-LAWS
  • TERM
  • DIFFUSION EQUATION
  • WAVE-EQUATIONS
  • SCHEMES
  • Weighted and shifted Grunwald differences

ASJC Scopus subject areas

  • Applied Mathematics
  • Chemistry(all)

WoS ResearchAreas Categories

  • Mathematics, Interdisciplinary Applications
  • Chemistry, Multidisciplinary

Cite this

@article{9a3c8ed4a9164f88a997a4c8147f299c,
title = "An efficient Hamiltonian numerical model for a fractional Klein–Gordon equation through weighted-shifted Gr{\"u}nwald differences",
keywords = "Convergence and stability, Fractional wave equation, Hamiltonian numerical model, Riesz space-fractional equations, Weighted and shifted Gr{\"u}nwald differences, SYSTEMS, CONSERVATION-LAWS, TERM, DIFFUSION EQUATION, WAVE-EQUATIONS, SCHEMES, Weighted and shifted Grunwald differences",
author = "Hendy, {Ahmed S.} and Mac{\'i}as-D{\'i}az, {Jorge E.}",
year = "2019",
month = "5",
day = "15",
doi = "10.1007/s10910-018-0973-7",
language = "English",
volume = "57",
pages = "1394--1412",
journal = "Journal of Mathematical Chemistry",
issn = "0259-9791",
publisher = "Kluwer Academic Publishers",
number = "5",

}

An efficient Hamiltonian numerical model for a fractional Klein–Gordon equation through weighted-shifted Grünwald differences. / Hendy, Ahmed S.; Macías-Díaz, Jorge E.

In: Journal of Mathematical Chemistry, Vol. 57, No. 5, 15.05.2019, p. 1394-1412.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - An efficient Hamiltonian numerical model for a fractional Klein–Gordon equation through weighted-shifted Grünwald differences

AU - Hendy, Ahmed S.

AU - Macías-Díaz, Jorge E.

PY - 2019/5/15

Y1 - 2019/5/15

KW - Convergence and stability

KW - Fractional wave equation

KW - Hamiltonian numerical model

KW - Riesz space-fractional equations

KW - Weighted and shifted Grünwald differences

KW - SYSTEMS

KW - CONSERVATION-LAWS

KW - TERM

KW - DIFFUSION EQUATION

KW - WAVE-EQUATIONS

KW - SCHEMES

KW - Weighted and shifted Grunwald differences

UR - http://www.scopus.com/inward/record.url?scp=85055982736&partnerID=8YFLogxK

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000467916900011

U2 - 10.1007/s10910-018-0973-7

DO - 10.1007/s10910-018-0973-7

M3 - Article

VL - 57

SP - 1394

EP - 1412

JO - Journal of Mathematical Chemistry

JF - Journal of Mathematical Chemistry

SN - 0259-9791

IS - 5

ER -