Identification of the left ventricle endocardial border on two-dimensional ultrasound images using the convolutional neural network Unet

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Citations (Scopus)
Original languageEnglish
Title of host publicationProceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages76-78
Number of pages3
ISBN (Electronic)9781538649466
DOIs
Publication statusPublished - 13 Jun 2018
Event2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018 - Yekaterinburg, Russian Federation
Duration: 6 May 20188 May 2018

Conference

Conference2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018
CountryRussian Federation
CityYekaterinburg
Period06/05/201808/05/2018

Keywords

  • deep learning
  • left ventricle
  • segmentation
  • ultrasound images
  • Unet

ASJC Scopus subject areas

  • Information Systems
  • Biomedical Engineering
  • Computer Networks and Communications
  • Computer Science Applications
  • Modelling and Simulation
  • Instrumentation
  • Electrical and Electronic Engineering
  • Control and Optimization

Fingerprint Dive into the research topics of 'Identification of the left ventricle endocardial border on two-dimensional ultrasound images using the convolutional neural network Unet'. Together they form a unique fingerprint.

Cite this