Integer partition problem: Theoretical approach to improving accuracy of classifier ensembles

Michael Khachay, Maria Pobery, Daniel Khachay

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)
Original languageEnglish
Pages (from-to)135-146
Number of pages12
JournalInternational Journal of Artificial Intelligence
Volume13
Issue number1
Publication statusPublished - 1 Jan 2015

Keywords

  • Computational learning theory
  • Ensemble classifiers
  • Pruning

Cite this

@article{fc4b9ec6bae049b18b9646616489b22f,
title = "Integer partition problem: Theoretical approach to improving accuracy of classifier ensembles",
keywords = "Computational learning theory, Ensemble classifiers, Pruning",
author = "Michael Khachay and Maria Pobery and Daniel Khachay",
year = "2015",
month = "1",
day = "1",
language = "English",
volume = "13",
pages = "135--146",
journal = "International Journal of Artificial Intelligence",
issn = "0974-0635",
publisher = "Indian Society for Development and Environment Research",
number = "1",

}

Integer partition problem: Theoretical approach to improving accuracy of classifier ensembles. / Khachay, Michael; Pobery, Maria; Khachay, Daniel.

In: International Journal of Artificial Intelligence, Vol. 13, No. 1, 01.01.2015, p. 135-146.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Integer partition problem: Theoretical approach to improving accuracy of classifier ensembles

AU - Khachay, Michael

AU - Pobery, Maria

AU - Khachay, Daniel

PY - 2015/1/1

Y1 - 2015/1/1

KW - Computational learning theory

KW - Ensemble classifiers

KW - Pruning

UR - http://www.scopus.com/inward/record.url?scp=84924357655&partnerID=8YFLogxK

M3 - Article

VL - 13

SP - 135

EP - 146

JO - International Journal of Artificial Intelligence

JF - International Journal of Artificial Intelligence

SN - 0974-0635

IS - 1

ER -