Machine learning in labor migration prediction

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

1 Citation (Scopus)
Original languageEnglish
Title of host publicationInternational Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017
PublisherAmerican Institute of Physics Inc.
Volume1978
ISBN (Electronic)9780735416901
DOIs
Publication statusPublished - 10 Jul 2018
EventInternational Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017 - Thessaloniki, Greece
Duration: 24 Sep 201730 Sep 2017

Conference

ConferenceInternational Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017
CountryGreece
CityThessaloniki
Period24/09/201730/09/2017

Fingerprint

machine learning
labor
classifiers
predictions
data mining
forecasting
learning
education

Keywords

  • dynamic modeling
  • economic expectancies
  • labor migration
  • Machine learning
  • optimization methods
  • systems behavior

ASJC Scopus subject areas

  • Physics and Astronomy(all)

WoS ResearchAreas Categories

  • Mathematics, Applied
  • Physics, Applied

Cite this

Tarasyev, A. A., Agarkov, G. A., & Hosseini, S. I. (2018). Machine learning in labor migration prediction. In International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017 (Vol. 1978). [440004] American Institute of Physics Inc.. https://doi.org/10.1063/1.5044033
Tarasyev, Alexandr A. ; Agarkov, Gavriil A. ; Hosseini, Seyed Iman. / Machine learning in labor migration prediction. International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017. Vol. 1978 American Institute of Physics Inc., 2018.
@inproceedings{41fbb46bca3a4de2adb275f117dea395,
title = "Machine learning in labor migration prediction",
keywords = "dynamic modeling, economic expectancies, labor migration, Machine learning, optimization methods, systems behavior",
author = "Tarasyev, {Alexandr A.} and Agarkov, {Gavriil A.} and Hosseini, {Seyed Iman}",
year = "2018",
month = "7",
day = "10",
doi = "10.1063/1.5044033",
language = "English",
volume = "1978",
booktitle = "International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017",
publisher = "American Institute of Physics Inc.",
address = "United States",

}

Tarasyev, AA, Agarkov, GA & Hosseini, SI 2018, Machine learning in labor migration prediction. in International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017. vol. 1978, 440004, American Institute of Physics Inc., International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017, Thessaloniki, Greece, 24/09/2017. https://doi.org/10.1063/1.5044033

Machine learning in labor migration prediction. / Tarasyev, Alexandr A.; Agarkov, Gavriil A.; Hosseini, Seyed Iman.

International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017. Vol. 1978 American Institute of Physics Inc., 2018. 440004.

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

TY - GEN

T1 - Machine learning in labor migration prediction

AU - Tarasyev, Alexandr A.

AU - Agarkov, Gavriil A.

AU - Hosseini, Seyed Iman

PY - 2018/7/10

Y1 - 2018/7/10

KW - dynamic modeling

KW - economic expectancies

KW - labor migration

KW - Machine learning

KW - optimization methods

KW - systems behavior

UR - http://www.scopus.com/inward/record.url?scp=85050000428&partnerID=8YFLogxK

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000445105400347

U2 - 10.1063/1.5044033

DO - 10.1063/1.5044033

M3 - Conference contribution

VL - 1978

BT - International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017

PB - American Institute of Physics Inc.

ER -

Tarasyev AA, Agarkov GA, Hosseini SI. Machine learning in labor migration prediction. In International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017. Vol. 1978. American Institute of Physics Inc. 2018. 440004 https://doi.org/10.1063/1.5044033