New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems

Guiping Wang, T. E. Simos

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)
Original languageEnglish
Pages (from-to)494-515
Number of pages22
JournalJournal of Mathematical Chemistry
Volume57
Issue number2
DOIs
Publication statusPublished - 15 Feb 2019

Fingerprint

Initial-boundary-value Problem
Boundary value problems
Bibliographies
Differential equations
Differential equation
Bibliography

Keywords

  • Derivative of the phase-lag
  • Hybrid
  • Initial value problems
  • Multistep
  • Oscillating solution
  • Phase-lag
  • Schrödinger equation
  • Symmetric
  • 65L05
  • PREDICTOR-CORRECTOR METHOD
  • NUMEROV-TYPE METHODS
  • KUTTA-NYSTROM METHOD
  • SCHRODINGER-EQUATION
  • INITIAL-VALUE PROBLEMS
  • TRIGONOMETRICALLY-FITTED METHODS
  • FINITE-DIFFERENCE PAIR
  • NUMERICAL-SOLUTION
  • Schrodinger equation
  • P-STABLE METHOD
  • EXPLICIT 4-STEP METHOD

ASJC Scopus subject areas

  • Chemistry(all)
  • Applied Mathematics

WoS ResearchAreas Categories

  • Chemistry, Multidisciplinary
  • Mathematics, Interdisciplinary Applications

Cite this

@article{c0261529bb0f4a0bb3c936b3d08df041,
title = "New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems",
keywords = "Derivative of the phase-lag, Hybrid, Initial value problems, Multistep, Oscillating solution, Phase-lag, Schr{\"o}dinger equation, Symmetric, 65L05, PREDICTOR-CORRECTOR METHOD, NUMEROV-TYPE METHODS, KUTTA-NYSTROM METHOD, SCHRODINGER-EQUATION, INITIAL-VALUE PROBLEMS, TRIGONOMETRICALLY-FITTED METHODS, FINITE-DIFFERENCE PAIR, NUMERICAL-SOLUTION, Schrodinger equation, P-STABLE METHOD, EXPLICIT 4-STEP METHOD",
author = "Guiping Wang and Simos, {T. E.}",
year = "2019",
month = "2",
day = "15",
doi = "10.1007/s10910-018-0961-y",
language = "English",
volume = "57",
pages = "494--515",
journal = "Journal of Mathematical Chemistry",
issn = "0259-9791",
publisher = "Kluwer Academic Publishers",
number = "2",

}

New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems. / Wang, Guiping; Simos, T. E.

In: Journal of Mathematical Chemistry, Vol. 57, No. 2, 15.02.2019, p. 494-515.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems

AU - Wang, Guiping

AU - Simos, T. E.

PY - 2019/2/15

Y1 - 2019/2/15

KW - Derivative of the phase-lag

KW - Hybrid

KW - Initial value problems

KW - Multistep

KW - Oscillating solution

KW - Phase-lag

KW - Schrödinger equation

KW - Symmetric

KW - 65L05

KW - PREDICTOR-CORRECTOR METHOD

KW - NUMEROV-TYPE METHODS

KW - KUTTA-NYSTROM METHOD

KW - SCHRODINGER-EQUATION

KW - INITIAL-VALUE PROBLEMS

KW - TRIGONOMETRICALLY-FITTED METHODS

KW - FINITE-DIFFERENCE PAIR

KW - NUMERICAL-SOLUTION

KW - Schrodinger equation

KW - P-STABLE METHOD

KW - EXPLICIT 4-STEP METHOD

UR - http://www.scopus.com/inward/record.url?scp=85055895543&partnerID=8YFLogxK

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000458139300005

U2 - 10.1007/s10910-018-0961-y

DO - 10.1007/s10910-018-0961-y

M3 - Article

VL - 57

SP - 494

EP - 515

JO - Journal of Mathematical Chemistry

JF - Journal of Mathematical Chemistry

SN - 0259-9791

IS - 2

ER -