Numerical solution of the differential diffusion equation for a steel carburizing process

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Original languageEnglish
Title of host publicationMaterials Engineering and Technologies for Production and Processing IV
EditorsAndrey Radionov
PublisherTrans Tech Publications Ltd.
Pages1230-1234
Number of pages5
ISBN (Print)9783035713381
DOIs
Publication statusPublished - 1 Jan 2018
Event4th International Conference on Industrial Engineering, ICIE 2018 - Moscow, Russian Federation
Duration: 15 May 201818 May 2018

Publication series

NameSolid State Phenomena
Volume284 SSP
ISSN (Electronic)1662-9779

Conference

Conference4th International Conference on Industrial Engineering, ICIE 2018
CountryRussian Federation
CityMoscow
Period15/05/201818/05/2018

Fingerprint

carburizing
Carburizing
Steel
steels
Finite difference method
Boundary conditions
boundary conditions
Temperature
temperature

Keywords

  • Carbon concentration profile
  • Carburizing
  • Differential diffusion equation
  • Numerical solution
  • Steel

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics

Cite this

Maisuradze, M. V., & Kuklina, A. A. (2018). Numerical solution of the differential diffusion equation for a steel carburizing process. In A. Radionov (Ed.), Materials Engineering and Technologies for Production and Processing IV (pp. 1230-1234). (Solid State Phenomena; Vol. 284 SSP). Trans Tech Publications Ltd.. https://doi.org/10.4028/www.scientific.net/SSP.284.1230
Maisuradze, M. V. ; Kuklina, A. A. / Numerical solution of the differential diffusion equation for a steel carburizing process. Materials Engineering and Technologies for Production and Processing IV. editor / Andrey Radionov. Trans Tech Publications Ltd., 2018. pp. 1230-1234 (Solid State Phenomena).
@inproceedings{56ce74bba65947cb868b4dab5f4530fd,
title = "Numerical solution of the differential diffusion equation for a steel carburizing process",
keywords = "Carbon concentration profile, Carburizing, Differential diffusion equation, Numerical solution, Steel",
author = "Maisuradze, {M. V.} and Kuklina, {A. A.}",
year = "2018",
month = "1",
day = "1",
doi = "10.4028/www.scientific.net/SSP.284.1230",
language = "English",
isbn = "9783035713381",
series = "Solid State Phenomena",
publisher = "Trans Tech Publications Ltd.",
pages = "1230--1234",
editor = "Andrey Radionov",
booktitle = "Materials Engineering and Technologies for Production and Processing IV",
address = "Switzerland",

}

Maisuradze, MV & Kuklina, AA 2018, Numerical solution of the differential diffusion equation for a steel carburizing process. in A Radionov (ed.), Materials Engineering and Technologies for Production and Processing IV. Solid State Phenomena, vol. 284 SSP, Trans Tech Publications Ltd., pp. 1230-1234, 4th International Conference on Industrial Engineering, ICIE 2018, Moscow, Russian Federation, 15/05/2018. https://doi.org/10.4028/www.scientific.net/SSP.284.1230

Numerical solution of the differential diffusion equation for a steel carburizing process. / Maisuradze, M. V.; Kuklina, A. A.

Materials Engineering and Technologies for Production and Processing IV. ed. / Andrey Radionov. Trans Tech Publications Ltd., 2018. p. 1230-1234 (Solid State Phenomena; Vol. 284 SSP).

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

TY - GEN

T1 - Numerical solution of the differential diffusion equation for a steel carburizing process

AU - Maisuradze, M. V.

AU - Kuklina, A. A.

PY - 2018/1/1

Y1 - 2018/1/1

KW - Carbon concentration profile

KW - Carburizing

KW - Differential diffusion equation

KW - Numerical solution

KW - Steel

UR - http://www.scopus.com/inward/record.url?scp=85055950326&partnerID=8YFLogxK

U2 - 10.4028/www.scientific.net/SSP.284.1230

DO - 10.4028/www.scientific.net/SSP.284.1230

M3 - Conference contribution

SN - 9783035713381

T3 - Solid State Phenomena

SP - 1230

EP - 1234

BT - Materials Engineering and Technologies for Production and Processing IV

A2 - Radionov, Andrey

PB - Trans Tech Publications Ltd.

ER -

Maisuradze MV, Kuklina AA. Numerical solution of the differential diffusion equation for a steel carburizing process. In Radionov A, editor, Materials Engineering and Technologies for Production and Processing IV. Trans Tech Publications Ltd. 2018. p. 1230-1234. (Solid State Phenomena). https://doi.org/10.4028/www.scientific.net/SSP.284.1230