АНАЛОГ ТЕОРЕМЫ РУДИНА ДЛЯ НЕПРЕРЫВНЫХ РАДИАЛЬНЫХ ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННЫХ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Resultado de la investigación: Articlerevisión exhaustiva

Resumen

Let G be the class of radial real-valued functions of m variables with support in the unit ball of the space that are continuous on the whole space and have a nonnegative Fourier transform. For , it is proved that a function f from the class G can be presented as the sum of self-convolutions of at most countably many real-valued functions f k with support in the ball of radius 1/2. This result generalizes the theorem proved by Rudin under the assumptions that the function f is infinitely differentiable and the functions f k are complex-valued.
Título traducido de la contribuciónAn analog of Rudin's theorem for continuous radial positive definite functions of several variables
Idioma originalRussian
Páginas (desde-hasta)172-179
Número de páginas7
PublicaciónТруды института математики и механики УрО РАН
Volumen18
N.º4
EstadoPublished - 2012

GRNTI

  • 27.00.00 MATHEMATICS

Level of Research Output

  • VAK List

Huella

Profundice en los temas de investigación de 'АНАЛОГ ТЕОРЕМЫ РУДИНА ДЛЯ НЕПРЕРЫВНЫХ РАДИАЛЬНЫХ ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННЫХ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ'. En conjunto forman una huella única.

Citar esto