Гармонические интерполяционные всплески в краевой задаче Неймана в кольце

Resultado de la investigación: Article

Resumen

В данной статье рассматривается краевая задача Неймана в центральносимметричном кольце с единичным внешним радиусом и непрерывными граничными значениями. Решение поставленной задачи основано на разложении в ряд непрерывных граничных значений по интерполяционным и интерполяционно-ортогональным 2π-периодическим всплескам, состоящим из тригонометрических полиномов. Идея подобного разложения и конструкция интерполяционных и интерполяционно-ортогональных 2π-периодических всплесков, построенных на основе функций мейеровского типа, принадлежат Ю.Н. Субботину и Н.И. Черных. Удобство построенных рядов состоит в том, что они легко продолжаются до гармонических в круге полиномов, с помощью которых уже удается представить решение исходной задачи в кольце в виде двух равномерно сходящихся в замыкании этого кольца рядов. Также коэффициенты этих рядов легко считаются и не требуют вычисления интегралов. В результате получено точное представление решения краевой задачи Неймана в кольце в виде двух рядов по упомянутой выше системе гармонических всплесков, и найдена погрешность приближения точного решения частичными суммами этих рядов.
Título traducido de la contribuciónHarmonic interpolating wavelets in the Neumann boundary value problem in a ring
Idioma originalRussian
Páginas (desde-hasta)279-289
Número de páginas11
PublicaciónТруды института математики и механики УрО РАН
Volumen26
N.º4
DOI
EstadoPublished - 2020

ASJC Scopus subject areas

  • Applied Mathematics
  • Mathematics(all)
  • Computer Science Applications
  • Computational Mechanics

WoS ResearchAreas Categories

  • Mathematics, Applied

GRNTI

  • 27.00.00 MATHEMATICS

Level of Research Output

  • VAK List

Huella Profundice en los temas de investigación de 'Гармонические интерполяционные всплески в краевой задаче Неймана в кольце'. En conjunto forman una huella única.

Citar esto