Resumen
The Cauchy problem for the Hamilton-Jacobi equation, which appears in molecular biology for the Crow-Kimura model of molecular evolution, is considered. The state characteristics of the equation that start in a given initial manifold bounded in the state space stay in a strip bounded in the state variable and fill a part of this strip. The values attained by the impulse characteristics on a finite time interval are arbitrarily large in magnitude. We propose a construction of a smooth extension for a continuous minimax/viscosity solution of the problem to the part of the strip that is not covered by the characteristics starting in the initial manifold.
Título traducido de la contribución | Construction of a continuous minimax/viscosity solution of the Hamilton-Jacobi-Bellman equation with nonextendable characteristics |
---|---|
Idioma original | Russian |
Páginas (desde-hasta) | 247-257 |
Número de páginas | 11 |
Publicación | Труды института математики и механики УрО РАН |
Volumen | 20 |
N.º | 4 |
Estado | Published - 2014 |
GRNTI
- 27.00.00 MATHEMATICS
Level of Research Output
- VAK List