ОДНОШАГОВЫЕ ЧИСЛЕННЫЕ МЕТОДЫ ДЛЯ РЕШЕНИЯ СМЕШАННЫХ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Resultado de la investigación: Articlerevisión exhaustiva

Resumen

First-order partial differential equations are reduced to ordinary differential equations by the method of characteristics. If there is a delay in the original equation, a similar method reduces the equation to a mixed functional differential equation with influence effects in the space variable and with time heredity. We present schemes of one-step multistage methods (analogs of explicit Runge-Kutta methods) for the numerical solution of mixed functional differential equations with the use of two-dimensional interpolation by degenerate splines. Orders of convergence are studied and results of numerical experiments on test examples are given.
Título traducido de la contribuciónOne-step numerical methods for mixed functional differential equations
Idioma originalRussian
Páginas (desde-hasta)187-197
Número de páginas11
PublicaciónТруды института математики и механики УрО РАН
Volumen21
N.º2
EstadoPublished - 2015

GRNTI

  • 27.41.00

Level of Research Output

  • VAK List

Huella Profundice en los temas de investigación de 'ОДНОШАГОВЫЕ ЧИСЛЕННЫЕ МЕТОДЫ ДЛЯ РЕШЕНИЯ СМЕШАННЫХ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ'. En conjunto forman una huella única.

Citar esto