TY - JOUR
T1 - О локализации негладких линий разрыва функции двух переменных
AU - Ageev, A. L.
AU - Antonova, T.V.
PY - 2019
Y1 - 2019
N2 - Рассматриваются некорректно поставленные задачи локализации (определения положения) линий разрыва зашумленной функции двух переменных (изображения). Для равномерной сетки с шагом τ предполагается, что в каждом узле известны средние значения на квадрате со стороной τ от возмущенной функции. Возмущенная функция приближает точную в пространстве L2(R2), и уровень возмущения δ известен. Ранее авторами был изучен случай кусочно-гладких линий разрыва, которые, как правило, отвечают границам искусственных объектов на изображении. В настоящей статье разрабатывается подход к изучению алгоритмов локализации, позволяющий ослабить условия на гладкость линий разрыва и включить в рассмотрение также негладкие линии разрыва, которые могут описывать границы естественных объектов. Для решения рассматриваемой задачи на основе процедур усреднения конструируются и исследуются глобальные дискретные алгоритмы приближения линий разрыва множеством точек равномерной сетки. Формулируются условия на точную функцию и строится класс корректности, содержащий, в частности, функции с негладкой линией разрыва. Проводится теоретическое изучение построенных алгоритмов на данном классе. Устанавливается, что предложенные алгоритмы позволяют получить точность локализации порядка O(δ). Также приводятся оценки других важных параметров, характеризующих работу алгоритма локализации.
AB - Рассматриваются некорректно поставленные задачи локализации (определения положения) линий разрыва зашумленной функции двух переменных (изображения). Для равномерной сетки с шагом τ предполагается, что в каждом узле известны средние значения на квадрате со стороной τ от возмущенной функции. Возмущенная функция приближает точную в пространстве L2(R2), и уровень возмущения δ известен. Ранее авторами был изучен случай кусочно-гладких линий разрыва, которые, как правило, отвечают границам искусственных объектов на изображении. В настоящей статье разрабатывается подход к изучению алгоритмов локализации, позволяющий ослабить условия на гладкость линий разрыва и включить в рассмотрение также негладкие линии разрыва, которые могут описывать границы естественных объектов. Для решения рассматриваемой задачи на основе процедур усреднения конструируются и исследуются глобальные дискретные алгоритмы приближения линий разрыва множеством точек равномерной сетки. Формулируются условия на точную функцию и строится класс корректности, содержащий, в частности, функции с негладкой линией разрыва. Проводится теоретическое изучение построенных алгоритмов на данном классе. Устанавливается, что предложенные алгоритмы позволяют получить точность локализации порядка O(δ). Также приводятся оценки других важных параметров, характеризующих работу алгоритма локализации.
KW - ill-posed problem
KW - regularization method
KW - discontinuity lines
KW - global localization
KW - discretization
KW - separability threshold
KW - Regularization method
KW - Discretization
KW - Separability threshold
KW - Discontinuity lines
KW - Ill-posed problem
KW - Global localization
KW - ill-posed problem
KW - regularization method
KW - discontinuity lines
KW - global localization
KW - discretization
KW - separability threshold
UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000485178300001
UR - https://elibrary.ru/item.asp?id=39323533
UR - http://www.scopus.com/inward/record.url?scp=85078271306&partnerID=8YFLogxK
U2 - 10.21538/0134-4889-2019-25-3-9-23
DO - 10.21538/0134-4889-2019-25-3-9-23
M3 - Статья
VL - 25
SP - 9
EP - 23
JO - Труды института математики и механики УрО РАН
JF - Труды института математики и механики УрО РАН
SN - 0134-4889
IS - 3
ER -