The Dependence of the Sunspot Forecast Accuracy Using LSTM Networks from Number of Cycles in the Training Set

Resultado de la investigación: Conference contributionrevisión exhaustiva

1 Cita (Scopus)
Idioma originalEnglish
Título de la publicación alojadaProceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas452-455
Número de páginas4
ISBN (versión digital)9781728131658
DOI
EstadoPublished - may 2020
Evento2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020 - УрФУ, ИРИТ-РтФ, Yekaterinburg, Russian Federation
Duración: 14 may 202015 may 2020

Serie de la publicación

NombreProceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020

Conference

Conference2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020
País/TerritorioRussian Federation
CiudadYekaterinburg
Período14/05/202015/05/2020

ASJC Scopus subject areas

  • Hardware and Architecture
  • Signal Processing
  • Information Systems and Management
  • Biomedical Engineering
  • Electrical and Electronic Engineering
  • Health Informatics

Huella

Profundice en los temas de investigación de 'The Dependence of the Sunspot Forecast Accuracy Using LSTM Networks from Number of Cycles in the Training Set'. En conjunto forman una huella única.

Citar esto