Use of quantum dots (QD) as artificial neurostimulators of phototransduction in the retina of the eye in its diseases is discussed. The results of investigation of kinetics of interaction of QD with retinal cells, conditions for the most effective energy transfer from the quantum dot to protein surrounding of photoreceptor are given. Structural and dynamic organization of photosynthetic complexes has been studied; modeling of energy migration processes in hybrid nanostructures consisting of pigment-protein complexes and quantum dots has been performed. Using the concept of dipole-dipole interaction and multifields, mathematical apparatus of local fields calculation in nano-biocomplex has been modified by using Mi coefficients considering N-layered covering of spherical QD with arbitrary composition and size and limitation of expansion slots by multifields. Distributions of scattered electric field from a cluster of QD with 5×5×3 dimensions for two types of incident field linear polarization have been obtained. Physical and biochemical processes associated with formation of plasmon-polariton resonances promoting Ferster’s radiationless energy transfer (FRET effect) have been discussed. It has been determined that FRET efficacy depends on the distance between donor-acceptor couples (QD-protein molecules and neighboring QD), orientation of dipole moments in donor-acceptor couples, and the extent of emission and absorption spectra overlap in dipole couples. Physical processes accompanying FRET-interaction of donor-acceptor couples have been discussed. Presence of electric dipole scattering, magnetic dipole scattering and their interference in the scattering field of a QD cluster which enables cluster concentration of light energy has been confirmed. The results of spectral characteristics study of natural pigment-protein complexes of the eye during interaction with QD have been generalized. These complexes are nanostructured associated colloids or complex fluids in which electrostatic, steric, hydrophobic interactions act, intermembrane and intramembranous cell power, adhesion, salvation, micelle formation are manifested, and which could be analyzed by methods of thermodynamics of intermolecular forces and equilibrium structures, electrostatics, interaction of Van der Vaals, Lifshitz theory, and colloid stability theory. Photoluminescence spectra of samples with GA-150 type QD in physiologic solution have been measured separately with three components: vitreous body, subretinal fluid and retinal biopsy sample with fixed molar ratio of the components in samples. Surgical methods of QD solution implantation into the eye for stimulation of phototransduction process have been developed: injection of the solution into the subretinal space in presence of rhegmatogenous retinal detachment; injection of the solution through a micro-retinotomy; injection of QD solution into the vitreous cavity.
Translated title of the contributionModeling and experimental investigation of nano-hybrid bioconjugates based on quantum dots for ophthalmology
Original languageRussian
Pages (from-to)32-44
Number of pages13
JournalНаукоемкие технологии
Volume18
Issue number1
Publication statusPublished - 2017

    GRNTI

  • 29.31.00

    Level of Research Output

  • VAK List

ID: 1669383