АНАЛОГ ТЕОРЕМЫ РУДИНА ДЛЯ НЕПРЕРЫВНЫХ РАДИАЛЬНЫХ ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННЫХ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Resultado de pesquisa: Articlerevisão de pares

Resumo

Let G be the class of radial real-valued functions of m variables with support in the unit ball of the space that are continuous on the whole space and have a nonnegative Fourier transform. For , it is proved that a function f from the class G can be presented as the sum of self-convolutions of at most countably many real-valued functions f k with support in the ball of radius 1/2. This result generalizes the theorem proved by Rudin under the assumptions that the function f is infinitely differentiable and the functions f k are complex-valued.
Título traduzido da contribuiçãoAn analog of Rudin's theorem for continuous radial positive definite functions of several variables
Idioma originalRussian
Páginas (de-até)172-179
Número de páginas7
RevistaТруды института математики и механики УрО РАН
Volume18
Número de emissão4
Estado da publicaçãoPublished - 2012

GRNTI

  • 27.00.00 MATHEMATICS

Level of Research Output

  • VAK List

Impressão digital

Mergulhe nos tópicos de investigação de “АНАЛОГ ТЕОРЕМЫ РУДИНА ДЛЯ НЕПРЕРЫВНЫХ РАДИАЛЬНЫХ ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННЫХ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ“. Em conjunto formam uma impressão digital única.

Citar isto