ОБ АВТОМОРФИЗМАХ ДИСТАНЦИОННО РЕГУЛЯРНОГО ГРАФА С МАССИВОМ ПЕРЕСЕЧЕНИЙ {69,56,10;1,14,60}

Александр Алексеевич Махнев, Марина Сефовна Нирова

Resultado de pesquisa: Articlerevisão de pares

Resumo

Let be a distance-regular graph of diameter 3 with eigenvalues . If , then the graph is strongly regular and the complementary graph is pseudogeometric for . If does not contain triangles and the number of its vertices~ is less than 800, then has intersection array {69,56,10;1,14,60}. In this case is a graph with parameters (392,46,0,6) and is a strongly regular graph with parameters (392,115,18,40). Note that the neighborhood of any vertex in a graph with parameters (392,115,18,40) is a strongly regular graph with parameters (115,18,1,3), and its existence is unknown. In this paper, we find possible automorphisms of this strongly regular graph and automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}. In particular, it is proved that the latter graph is not arc-transitive.
Título traduzido da contribuiçãoOn automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}
Idioma originalRussian
Páginas (de-até)182-190
Número de páginas9
RevistaТруды института математики и механики УрО РАН
Volume23
Número de emissão3
DOIs
Estado da publicaçãoPublished - 2017

GRNTI

  • 27.45.00

Level of Research Output

  • VAK List

Impressão digital

Mergulhe nos tópicos de investigação de “ОБ АВТОМОРФИЗМАХ ДИСТАНЦИОННО РЕГУЛЯРНОГО ГРАФА С МАССИВОМ ПЕРЕСЕЧЕНИЙ {69,56,10;1,14,60}“. Em conjunto formam uma impressão digital única.

Citar isto