ЭКСТРЕМАЛЬНАЯ ФУНКЦИЯ В ЗАДАЧЕ ДЕЛЬСАРТА ОЦЕНКИ СВЕРХУ КОНТАКТНОГО ЧИСЛА ТРЕХМЕРНОГО ПРОСТРАНСТВА

Resultado de pesquisa: Articlerevisão de pares

Resumo

We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that the prolem has a unique solution, which is a polynomial of degree . This polynomial is a linear combination of Legendre polynomials of degrees with positive coefficients; it has simple root and five roots of multiplicity in . Also we consider dual problem for nonnegative measures on . We prove that extremal measure is unique.
Título traduzido da contribuiçãoThe extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
Idioma originalRussian
Páginas (de-até)130-141
RevistaТруды института математики и механики УрО РАН
Volume20
Número de emissão1
Estado da publicaçãoPublished - 2014

GRNTI

  • 27.21.00

Level of Research Output

  • VAK List

Impressão digital

Mergulhe nos tópicos de investigação de “ЭКСТРЕМАЛЬНАЯ ФУНКЦИЯ В ЗАДАЧЕ ДЕЛЬСАРТА ОЦЕНКИ СВЕРХУ КОНТАКТНОГО ЧИСЛА ТРЕХМЕРНОГО ПРОСТРАНСТВА“. Em conjunto formam uma impressão digital única.

Citar isto