Densification and Proton Conductivity of La1-xBaxScO3-δ Electrolyte Membranes

Alyona Lesnichyova, Semyon Belyakov, Anna Stroeva, Sofia Petrova, Vasiliy Kaichev, Anton Kuzmin

Resultado de pesquisa: Articlerevisão de pares

Resumo

Bain La1-xBaxScO3-δ impairs sintering and leads to a decrease in its ceramic density. Two approaches have been studied for obtaining dense ceramics: using a high processing temperature and the introduction of a Co3O4 sintering additive. An addition of only 0.5 wt% of Co3O4 sintering additive, despite the positive sintering effect, causes a noticeable violation of stoichiometry, with partial decomposition of the material. This can lead to the formation of cationic vacancies, which form associates with oxygen vacancies and significantly reduce the oxygen ion and proton conductivity of the materials. There is also a partial substitution of Co for Sc in La1-xBaxScO3-δ, which reduces the stability of protons: it reduces the enthalpy of the hydration reaction, but increases the mobility of protons. Thus, the Co3O4 sintering additive causes a complex of negative effects on the conductivity of La1-xBaxScO3-δ materials. Only high-temperature (1800 °C) processing with protection against Ba loss contributes to the production of dense La1-xBaxScO3-δ ceramics. The chemical composition of such ceramics corresponds well to the specified one, which ensures high water uptake and, consequently, high proton conductivity.
Idioma originalEnglish
Páginas (de-até)1084
RevistaMembranes
Volume12
Número de emissão11
DOIs
Estado da publicaçãoPublished - 31 out 2022

WoS ResearchAreas Categories

  • Biotechnology & Applied Microbiology
  • Chemistry, Physical
  • Engineering, Chemical
  • Materials Science, Multidisciplinary
  • Polymer Science

Impressão digital

Mergulhe nos tópicos de investigação de “Densification and Proton Conductivity of La1-xBaxScO3-δ Electrolyte Membranes“. Em conjunto formam uma impressão digital única.

Citar isto