ON APPROXIMATION OF JOINT FIXED POINTS

Переведенное название: Об аппроксимации совместных неподвижных точек

Результат исследований: Вклад в журналСтатья

Аннотация

For a given partially ordered set (poset) and a given family of mappings of the poset into itself, we study the problem of the description of joint fixed points of this family. Well-known Tarski''s theorem gives the structure of the set of joint fixed points of isotone automorphisms on a complete lattice. This theorem has several generalizations (see, e.g., Markowsky, Ronse) that weaken demands on the order structure and upgrade in an appropriate manner the assertion on the structure of the set of joint fixed points. However, there is a lack of the statements similar to Kantorovich or Kleene theorems, describing the set of joint fixed points in terms of convergent sequences of the operator degrees. The paper provids conditions on the poset and on the family; these conditions ensure that the iterative sequences of elements of this family approximate the set of joint fixed points. The result obtained develops in a constructive direction the mentioned theorems on joint fixed points.
Переведенное названиеОб аппроксимации совместных неподвижных точек
Язык оригиналаАнглийский
Страницы (с-по)67-72
Число страниц6
ЖурналJournal of Optical Technology (A Translation of Opticheskii Zhurnal)
Том2
Номер выпуска4
DOI
СостояниеОпубликовано - 2015

ГРНТИ

  • 27.00.00 МАТЕМАТИКА

Уровень публикации

  • Перечень ВАК

Цитировать