ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ПРОЦЕССА ПРЕССОВАНИЯ ТРУБ ИЗ СПЛАВОВ НА ОСНОВЕ ЦИРКОНИЯ

Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

Аннотация

Изложен подход к анализу процесса прессования металлов, имеющих гексагональную плотноупакованнуюрешетку, на примере циркония. Отмечено, что в процессах деформации может возникать предпочтительная ориентировка кристаллов, которая приводит к отсутствию равенства свойств во всех направлениях. При прессовании формирование анизотропии происходит под действием напряжений, в результате которых возникают пластические деформации. Целью работы является определение компонент тензора деформаций при прессовании для прогноза формирования анизотропии свойств циркония и подобных материалов в процессе прессования. Отмечено, что наличие деформации сжатия в радиальном направлении при прессовании приводит к формированию радиальной текстуры и увеличению параметра Кернса в радиальном направлении. В операциях формоизменения труб для оценки величины деформации в радиальном и тангенциальном направлениях применяют обобщенные показатели. Для управления параметрами Кернса необходимо изменять соотношения между логарифмическими показателями деформации при прессовании. Рассмотрена схема очага деформации при прессовании трубы. Пластическая зона расположена между двумя жесткими зонами в сферической системе координат. Описано поле скоростей деформации в виде соответствующих формул. Отмечено, что в соответствии с решением компоненты тензора скорости деформации являются функциями координат. Их интегрирование приводит к получению компонент тензора деформации, которые тоже являются функциями координат, что не позволяет описать деформированное состояние с помощью констант. Методом конечных элементов (МКЭ) получены решение задачи прессования и распределение интенсивности скоростей деформации сдвига как инвариантной величины, а также компонент тензора скоростей деформации в цилиндрической системе координат. Выявлено, что полученные МКЭ значения компонент деформаций значительно отличаются от гипотетических значений, определенных по геометрическим параметрам очага деформации. Установлено, что ранее сделанные предположения в области распределения деформаций, влияющего на формирование текстуры в циркониевых и подобных сплавах, с использованием параметров Кернса нуждаются в уточнениях. При прессовании полых заготовок необходимо учитывать специфику пластического течения металла, а не только соотношения геометрических параметров заготовки и готового изделия. Для приближения картины деформированного состояния к реальной следует применять расчетные методы, позволяющие осуществлять оценку компонент тензора деформации.
Переведенное названиеFeatures of the zirconium-based alloys tube pressing process modeling
Язык оригиналаРусский
Страницы (с-по)82-87
Число страниц6
ЖурналЦветные металлы
Номер выпуска9
DOI
СостояниеОпубликовано - 1 янв 2018

Отпечаток

pressing
Zirconium
tubes
Tensors
tensors
Anisotropy
anisotropy
strain rate
Strain rate
finite element method
textures
Textures
Metals
close packed lattices
zirconium alloys
Finite element method
cylindrical coordinates
spherical coordinates
plastic flow
shear strain

Ключевые слова

    Предметные области ASJC Scopus

    • Ceramics and Composites
    • Condensed Matter Physics
    • Physical and Theoretical Chemistry
    • Surfaces, Coatings and Films
    • Metals and Alloys
    • Materials Chemistry

    ГРНТИ

    • 53.00.00 МЕТАЛЛУРГИЯ

    Уровень публикации

    • Перечень ВАК

    Цитировать

    @article{35b7c41a375a41e0ade4dc65fe8246da,
    title = "ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ПРОЦЕССА ПРЕССОВАНИЯ ТРУБ ИЗ СПЛАВОВ НА ОСНОВЕ ЦИРКОНИЯ",
    abstract = "Изложен подход к анализу процесса прессования металлов, имеющих гексагональную плотноупакованнуюрешетку, на примере циркония. Отмечено, что в процессах деформации может возникать предпочтительная ориентировка кристаллов, которая приводит к отсутствию равенства свойств во всех направлениях. При прессовании формирование анизотропии происходит под действием напряжений, в результате которых возникают пластические деформации. Целью работы является определение компонент тензора деформаций при прессовании для прогноза формирования анизотропии свойств циркония и подобных материалов в процессе прессования. Отмечено, что наличие деформации сжатия в радиальном направлении при прессовании приводит к формированию радиальной текстуры и увеличению параметра Кернса в радиальном направлении. В операциях формоизменения труб для оценки величины деформации в радиальном и тангенциальном направлениях применяют обобщенные показатели. Для управления параметрами Кернса необходимо изменять соотношения между логарифмическими показателями деформации при прессовании. Рассмотрена схема очага деформации при прессовании трубы. Пластическая зона расположена между двумя жесткими зонами в сферической системе координат. Описано поле скоростей деформации в виде соответствующих формул. Отмечено, что в соответствии с решением компоненты тензора скорости деформации являются функциями координат. Их интегрирование приводит к получению компонент тензора деформации, которые тоже являются функциями координат, что не позволяет описать деформированное состояние с помощью констант. Методом конечных элементов (МКЭ) получены решение задачи прессования и распределение интенсивности скоростей деформации сдвига как инвариантной величины, а также компонент тензора скоростей деформации в цилиндрической системе координат. Выявлено, что полученные МКЭ значения компонент деформаций значительно отличаются от гипотетических значений, определенных по геометрическим параметрам очага деформации. Установлено, что ранее сделанные предположения в области распределения деформаций, влияющего на формирование текстуры в циркониевых и подобных сплавах, с использованием параметров Кернса нуждаются в уточнениях. При прессовании полых заготовок необходимо учитывать специфику пластического течения металла, а не только соотношения геометрических параметров заготовки и готового изделия. Для приближения картины деформированного состояния к реальной следует применять расчетные методы, позволяющие осуществлять оценку компонент тензора деформации.",
    keywords = "Anisotropy, Deformation rate, Deformation tensor, Finite element method, Kearns factors, Pressing, Texture",
    author = "Loginov, {Yu N.} and Polishchuk, {E. G.} and Tugbaev, {Yu V.}",
    year = "2018",
    month = "1",
    day = "1",
    doi = "10.17580/tsm.2018.09.13",
    language = "Русский",
    pages = "82--87",
    journal = "Цветные металлы",
    issn = "0372-2929",
    publisher = "Издательский дом {"}Руда и Металлы{"}",
    number = "9",

    }

    ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ПРОЦЕССА ПРЕССОВАНИЯ ТРУБ ИЗ СПЛАВОВ НА ОСНОВЕ ЦИРКОНИЯ. / Loginov, Yu N.; Polishchuk, E. G.; Tugbaev, Yu V.

    В: Цветные металлы, № 9, 01.01.2018, стр. 82-87.

    Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

    TY - JOUR

    T1 - ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ПРОЦЕССА ПРЕССОВАНИЯ ТРУБ ИЗ СПЛАВОВ НА ОСНОВЕ ЦИРКОНИЯ

    AU - Loginov, Yu N.

    AU - Polishchuk, E. G.

    AU - Tugbaev, Yu V.

    PY - 2018/1/1

    Y1 - 2018/1/1

    N2 - Изложен подход к анализу процесса прессования металлов, имеющих гексагональную плотноупакованнуюрешетку, на примере циркония. Отмечено, что в процессах деформации может возникать предпочтительная ориентировка кристаллов, которая приводит к отсутствию равенства свойств во всех направлениях. При прессовании формирование анизотропии происходит под действием напряжений, в результате которых возникают пластические деформации. Целью работы является определение компонент тензора деформаций при прессовании для прогноза формирования анизотропии свойств циркония и подобных материалов в процессе прессования. Отмечено, что наличие деформации сжатия в радиальном направлении при прессовании приводит к формированию радиальной текстуры и увеличению параметра Кернса в радиальном направлении. В операциях формоизменения труб для оценки величины деформации в радиальном и тангенциальном направлениях применяют обобщенные показатели. Для управления параметрами Кернса необходимо изменять соотношения между логарифмическими показателями деформации при прессовании. Рассмотрена схема очага деформации при прессовании трубы. Пластическая зона расположена между двумя жесткими зонами в сферической системе координат. Описано поле скоростей деформации в виде соответствующих формул. Отмечено, что в соответствии с решением компоненты тензора скорости деформации являются функциями координат. Их интегрирование приводит к получению компонент тензора деформации, которые тоже являются функциями координат, что не позволяет описать деформированное состояние с помощью констант. Методом конечных элементов (МКЭ) получены решение задачи прессования и распределение интенсивности скоростей деформации сдвига как инвариантной величины, а также компонент тензора скоростей деформации в цилиндрической системе координат. Выявлено, что полученные МКЭ значения компонент деформаций значительно отличаются от гипотетических значений, определенных по геометрическим параметрам очага деформации. Установлено, что ранее сделанные предположения в области распределения деформаций, влияющего на формирование текстуры в циркониевых и подобных сплавах, с использованием параметров Кернса нуждаются в уточнениях. При прессовании полых заготовок необходимо учитывать специфику пластического течения металла, а не только соотношения геометрических параметров заготовки и готового изделия. Для приближения картины деформированного состояния к реальной следует применять расчетные методы, позволяющие осуществлять оценку компонент тензора деформации.

    AB - Изложен подход к анализу процесса прессования металлов, имеющих гексагональную плотноупакованнуюрешетку, на примере циркония. Отмечено, что в процессах деформации может возникать предпочтительная ориентировка кристаллов, которая приводит к отсутствию равенства свойств во всех направлениях. При прессовании формирование анизотропии происходит под действием напряжений, в результате которых возникают пластические деформации. Целью работы является определение компонент тензора деформаций при прессовании для прогноза формирования анизотропии свойств циркония и подобных материалов в процессе прессования. Отмечено, что наличие деформации сжатия в радиальном направлении при прессовании приводит к формированию радиальной текстуры и увеличению параметра Кернса в радиальном направлении. В операциях формоизменения труб для оценки величины деформации в радиальном и тангенциальном направлениях применяют обобщенные показатели. Для управления параметрами Кернса необходимо изменять соотношения между логарифмическими показателями деформации при прессовании. Рассмотрена схема очага деформации при прессовании трубы. Пластическая зона расположена между двумя жесткими зонами в сферической системе координат. Описано поле скоростей деформации в виде соответствующих формул. Отмечено, что в соответствии с решением компоненты тензора скорости деформации являются функциями координат. Их интегрирование приводит к получению компонент тензора деформации, которые тоже являются функциями координат, что не позволяет описать деформированное состояние с помощью констант. Методом конечных элементов (МКЭ) получены решение задачи прессования и распределение интенсивности скоростей деформации сдвига как инвариантной величины, а также компонент тензора скоростей деформации в цилиндрической системе координат. Выявлено, что полученные МКЭ значения компонент деформаций значительно отличаются от гипотетических значений, определенных по геометрическим параметрам очага деформации. Установлено, что ранее сделанные предположения в области распределения деформаций, влияющего на формирование текстуры в циркониевых и подобных сплавах, с использованием параметров Кернса нуждаются в уточнениях. При прессовании полых заготовок необходимо учитывать специфику пластического течения металла, а не только соотношения геометрических параметров заготовки и готового изделия. Для приближения картины деформированного состояния к реальной следует применять расчетные методы, позволяющие осуществлять оценку компонент тензора деформации.

    KW - Anisotropy

    KW - Deformation rate

    KW - Deformation tensor

    KW - Finite element method

    KW - Kearns factors

    KW - Pressing

    KW - Texture

    UR - http://www.scopus.com/inward/record.url?scp=85054747312&partnerID=8YFLogxK

    UR - https://elibrary.ru/item.asp?id=35690720

    U2 - 10.17580/tsm.2018.09.13

    DO - 10.17580/tsm.2018.09.13

    M3 - Статья

    SP - 82

    EP - 87

    JO - Цветные металлы

    JF - Цветные металлы

    SN - 0372-2929

    IS - 9

    ER -