О ЗАДАЧЕ МАКСИМИЗАЦИИ МОДУЛЯРНОЙ ФУНКЦИИ В ГЕОМЕТРИЧЕСКОЙ РЕШЁТКЕ

Виталий Анатольевич Баранский, Михаил Юрьевич Выплов, Виктор Петрович Ильев

Результат исследований: Вклад в журналСтатья

Аннотация

Рассматривается задача максимизации модулярной функции на порядковом идеале конечной геометрической решётки. Исследуется возможность обобщения теоремы Радо - Эдмондса. Получена гарантированная оценка точности жадного алгоритма, обобщающая известную оценку Дженкинса - Корте - Хаусмана для задачи максимизации аддитивной функции на системе независимости.
Переведенное названиеOn the problem of maximizing a modular function in the geometric lattice
Язык оригиналаРусский
Страницы (с-по)2-13
Число страниц12
ЖурналИзвестия Иркутского государственного университета. Серия: Математика
Том6
Номер выпуска1
СостояниеОпубликовано - 2013

ГРНТИ

  • 27.45.00 Комбинаторный анализ. Теория графов

Уровень публикации

  • Перечень ВАК

Fingerprint Подробные сведения о темах исследования «О ЗАДАЧЕ МАКСИМИЗАЦИИ МОДУЛЯРНОЙ ФУНКЦИИ В ГЕОМЕТРИЧЕСКОЙ РЕШЁТКЕ». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать