TY - JOUR
T1 - О СХОДИМОСТИ РЕШЕНИЙ ВАРИАЦИОННЫХ ЗАДАЧ С НЕЯВНЫМИ ОГРАНИЧЕНИЯМИ, ЗАДАННЫМИ БЫСТРО ОСЦИЛЛИРУЮЩИМИ ФУНКЦИЯМИ
AU - Kovalevsky, Aleksandr Al'bertovich
PY - 2018
Y1 - 2018
N2 - Для функционалов, определенных на переменных пространствах Соболева, установлен ряд результатов о сходимости их минимизантов и минимальных значений на множествах функций, подчиненных неявным ограничениям посредством периодических быстро осциллирующих функций. В связи с формулировкой и обоснованием этих результатов введено определение Γ-сходимости функционалов, соответствующее заданным множествам ограничений. Специфика введенного определения заключается в том, что в нем идет речь о сходимости последовательности функционалов, определенных на переменных пространствах Соболева, к некоторой функции на вещественной прямой. Рассмотренные задачи минимизации имеют ту особенность, что для обоснования сходимости последовательности их решений сильная связанность областей определения соответствующих функционалов не требуется, тогда как эта связанность существенна, например, при исследовании сходимости решений вариационных задач Неймана и вариационных задач с явными односторонними и двусторонними ограничениями в переменных областях. Кроме упомянутых результатов, установлены также теоремы Γ-компактности последовательностей функционалов относительно заданных множеств ограничений.
AB - Для функционалов, определенных на переменных пространствах Соболева, установлен ряд результатов о сходимости их минимизантов и минимальных значений на множествах функций, подчиненных неявным ограничениям посредством периодических быстро осциллирующих функций. В связи с формулировкой и обоснованием этих результатов введено определение Γ-сходимости функционалов, соответствующее заданным множествам ограничений. Специфика введенного определения заключается в том, что в нем идет речь о сходимости последовательности функционалов, определенных на переменных пространствах Соболева, к некоторой функции на вещественной прямой. Рассмотренные задачи минимизации имеют ту особенность, что для обоснования сходимости последовательности их решений сильная связанность областей определения соответствующих функционалов не требуется, тогда как эта связанность существенна, например, при исследовании сходимости решений вариационных задач Неймана и вариационных задач с явными односторонними и двусторонними ограничениями в переменных областях. Кроме упомянутых результатов, установлены также теоремы Γ-компактности последовательностей функционалов относительно заданных множеств ограничений.
KW - variational problem
KW - implicit constraint
KW - variable domains
KW - functional
KW - minimizer
KW - minimum value
KW - Gamma-convergence
KW - HOMOGENIZATION
UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000451633100011
UR - https://elibrary.ru/item.asp?id=35060682
U2 - 10.21538/0134-4889-2018-24-2-107-122
DO - 10.21538/0134-4889-2018-24-2-107-122
M3 - Статья
VL - 24
SP - 107
EP - 122
JO - Труды института математики и механики УрО РАН
JF - Труды института математики и механики УрО РАН
SN - 0134-4889
IS - 2
ER -