СОПОСТАВИТЕЛЬНЫЙ АНАЛИЗ СВОЙСТВ МЕДНОЙ ПРОВОЛОКИ ПОСЛЕ ПРОТЯЖНОГО И КОНВЕЙЕРНОГО ОТЖИГА

Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

Аннотация

Целью работы является установление различий в последствиях протяжного и конвейерного видов отжига для случая термической обработки медной проволоки. Для сравнения эффекта конвейерного и протяжного отжига выполнена серия промышленных и лабораторных экспериментов с медной проволокой, полученной из катанки методом волочения. Проволоку диаметром 2 мм получали на двух предприятиях с применением волочильных станов, работающих в режиме скольжения. Степень деформации составила 2,8, относительное обжатие по площади - 94 %. Протяжной отжиг осуществляли с помощью приставки резистивного отжига, вмонтированной в линию работы волочильной машины при скорости протягивания 18 м/с. Время теплового воздействия составило 0,015 с. Во втором варианте отжиг осуществляли в конвейерной печи электросопротивления в атмосфере паров воды в течение 59 мин. Выявлено, что оба варианта характеризуются практически одинаковыми значениями временного сопротивления и относительного сужения. Временное сопротивление увеличилось по отношению к горячекатаному состоянию с 240 до 260 МПа, что можно объяснить измельчением зеренной структуры и изменением текстурного состояния. При этом предел текучести снижен со 142 до 108 МПа, т. е. на 24 %. Следующая серия экспериментов поставлена с изменением энергии, при которой проводили кратковременный протяжной отжиг, и изменением силы тока в приставке отжига машины при волочении проволоки диаметром 1,78 мм со скоростью 25 м/с. Ступенчато изменяли плотность тока отжига от 691 до 731 А/мм 2. После волочения проводили отбор образцов для испытаний и определяли механические свойства растяжением образцов. Функция временного сопротивления в зависимости от плотности тока имеет слабо выраженный минимум с различием максимального и минимального значений ~4 %. Значительно более выраженный минимум при плотности тока 715 А/мм 2 наблюдают для условного предела текучести. Максимальное значение (149 МПа) отличается от минимального (133 МПа) на 11 %. При этой же плотности тока достигнуто максимальное относительное удлинение - 38 %. Таким образом, показано, что можно достигнуть улучшения пластических свойств либо применением конвейерного отжига, либо оптимизацией плотности тока в операции протяжного отжига. По отношению к протяжному отжигу конвейерный позволяет несколько снизить временное сопротивление меди и значительно уменьшить условный предел текучести. При плотности тока 715 А/мм 2 достигнуты минимальные прочностные и максимальные пластические свойства.
Переведенное названиеComparative analysis of copper wire properties after broaching and conveyor annealing
Язык оригиналаРусский
Страницы (с-по)88-92
Число страниц5
ЖурналЦветные металлы
Номер выпуска10
СостояниеОпубликовано - 2014

Отпечаток

Broaching
Copper
wire
Wire
Annealing
copper
annealing
Current density
current density
tensile strength
Tensile strength
yield strength
adapters
Yield stress
plastic properties
Plastics
Wire drawing
Crystal microstructure
Steam
grinding

Ключевые слова

    Предметные области ASJC Scopus

    • Materials Chemistry
    • Metals and Alloys
    • Condensed Matter Physics
    • Physical and Theoretical Chemistry
    • Ceramics and Composites
    • Surfaces, Coatings and Films

    ГРНТИ

    • 53.00.00 МЕТАЛЛУРГИЯ

    Уровень публикации

    • Перечень ВАК

    Цитировать

    @article{4b4e368fed974df0bd8ea829174cc892,
    title = "СОПОСТАВИТЕЛЬНЫЙ АНАЛИЗ СВОЙСТВ МЕДНОЙ ПРОВОЛОКИ ПОСЛЕ ПРОТЯЖНОГО И КОНВЕЙЕРНОГО ОТЖИГА",
    abstract = "Целью работы является установление различий в последствиях протяжного и конвейерного видов отжига для случая термической обработки медной проволоки. Для сравнения эффекта конвейерного и протяжного отжига выполнена серия промышленных и лабораторных экспериментов с медной проволокой, полученной из катанки методом волочения. Проволоку диаметром 2 мм получали на двух предприятиях с применением волочильных станов, работающих в режиме скольжения. Степень деформации составила 2,8, относительное обжатие по площади - 94 {\%}. Протяжной отжиг осуществляли с помощью приставки резистивного отжига, вмонтированной в линию работы волочильной машины при скорости протягивания 18 м/с. Время теплового воздействия составило 0,015 с. Во втором варианте отжиг осуществляли в конвейерной печи электросопротивления в атмосфере паров воды в течение 59 мин. Выявлено, что оба варианта характеризуются практически одинаковыми значениями временного сопротивления и относительного сужения. Временное сопротивление увеличилось по отношению к горячекатаному состоянию с 240 до 260 МПа, что можно объяснить измельчением зеренной структуры и изменением текстурного состояния. При этом предел текучести снижен со 142 до 108 МПа, т. е. на 24 {\%}. Следующая серия экспериментов поставлена с изменением энергии, при которой проводили кратковременный протяжной отжиг, и изменением силы тока в приставке отжига машины при волочении проволоки диаметром 1,78 мм со скоростью 25 м/с. Ступенчато изменяли плотность тока отжига от 691 до 731 А/мм 2. После волочения проводили отбор образцов для испытаний и определяли механические свойства растяжением образцов. Функция временного сопротивления в зависимости от плотности тока имеет слабо выраженный минимум с различием максимального и минимального значений ~4 {\%}. Значительно более выраженный минимум при плотности тока 715 А/мм 2 наблюдают для условного предела текучести. Максимальное значение (149 МПа) отличается от минимального (133 МПа) на 11 {\%}. При этой же плотности тока достигнуто максимальное относительное удлинение - 38 {\%}. Таким образом, показано, что можно достигнуть улучшения пластических свойств либо применением конвейерного отжига, либо оптимизацией плотности тока в операции протяжного отжига. По отношению к протяжному отжигу конвейерный позволяет несколько снизить временное сопротивление меди и значительно уменьшить условный предел текучести. При плотности тока 715 А/мм 2 достигнуты минимальные прочностные и максимальные пластические свойства.",
    keywords = "Annealing, Copper wire, Current density, Drawing, Placticity, Strain, Strength",
    author = "Loginov, {Yu N.} and Demakov, {S. L.} and Illarionov, {A. G.} and Stepanov, {S. I.} and Kopylova, {T. P.}",
    year = "2014",
    language = "Русский",
    pages = "88--92",
    journal = "Цветные металлы",
    issn = "0372-2929",
    publisher = "Izdatel'stvo Ruda i Metally",
    number = "10",

    }

    СОПОСТАВИТЕЛЬНЫЙ АНАЛИЗ СВОЙСТВ МЕДНОЙ ПРОВОЛОКИ ПОСЛЕ ПРОТЯЖНОГО И КОНВЕЙЕРНОГО ОТЖИГА. / Loginov, Yu N.; Demakov, S. L.; Illarionov, A. G.; Stepanov, S. I.; Kopylova, T. P.

    В: Цветные металлы, № 10, 2014, стр. 88-92.

    Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

    TY - JOUR

    T1 - СОПОСТАВИТЕЛЬНЫЙ АНАЛИЗ СВОЙСТВ МЕДНОЙ ПРОВОЛОКИ ПОСЛЕ ПРОТЯЖНОГО И КОНВЕЙЕРНОГО ОТЖИГА

    AU - Loginov, Yu N.

    AU - Demakov, S. L.

    AU - Illarionov, A. G.

    AU - Stepanov, S. I.

    AU - Kopylova, T. P.

    PY - 2014

    Y1 - 2014

    N2 - Целью работы является установление различий в последствиях протяжного и конвейерного видов отжига для случая термической обработки медной проволоки. Для сравнения эффекта конвейерного и протяжного отжига выполнена серия промышленных и лабораторных экспериментов с медной проволокой, полученной из катанки методом волочения. Проволоку диаметром 2 мм получали на двух предприятиях с применением волочильных станов, работающих в режиме скольжения. Степень деформации составила 2,8, относительное обжатие по площади - 94 %. Протяжной отжиг осуществляли с помощью приставки резистивного отжига, вмонтированной в линию работы волочильной машины при скорости протягивания 18 м/с. Время теплового воздействия составило 0,015 с. Во втором варианте отжиг осуществляли в конвейерной печи электросопротивления в атмосфере паров воды в течение 59 мин. Выявлено, что оба варианта характеризуются практически одинаковыми значениями временного сопротивления и относительного сужения. Временное сопротивление увеличилось по отношению к горячекатаному состоянию с 240 до 260 МПа, что можно объяснить измельчением зеренной структуры и изменением текстурного состояния. При этом предел текучести снижен со 142 до 108 МПа, т. е. на 24 %. Следующая серия экспериментов поставлена с изменением энергии, при которой проводили кратковременный протяжной отжиг, и изменением силы тока в приставке отжига машины при волочении проволоки диаметром 1,78 мм со скоростью 25 м/с. Ступенчато изменяли плотность тока отжига от 691 до 731 А/мм 2. После волочения проводили отбор образцов для испытаний и определяли механические свойства растяжением образцов. Функция временного сопротивления в зависимости от плотности тока имеет слабо выраженный минимум с различием максимального и минимального значений ~4 %. Значительно более выраженный минимум при плотности тока 715 А/мм 2 наблюдают для условного предела текучести. Максимальное значение (149 МПа) отличается от минимального (133 МПа) на 11 %. При этой же плотности тока достигнуто максимальное относительное удлинение - 38 %. Таким образом, показано, что можно достигнуть улучшения пластических свойств либо применением конвейерного отжига, либо оптимизацией плотности тока в операции протяжного отжига. По отношению к протяжному отжигу конвейерный позволяет несколько снизить временное сопротивление меди и значительно уменьшить условный предел текучести. При плотности тока 715 А/мм 2 достигнуты минимальные прочностные и максимальные пластические свойства.

    AB - Целью работы является установление различий в последствиях протяжного и конвейерного видов отжига для случая термической обработки медной проволоки. Для сравнения эффекта конвейерного и протяжного отжига выполнена серия промышленных и лабораторных экспериментов с медной проволокой, полученной из катанки методом волочения. Проволоку диаметром 2 мм получали на двух предприятиях с применением волочильных станов, работающих в режиме скольжения. Степень деформации составила 2,8, относительное обжатие по площади - 94 %. Протяжной отжиг осуществляли с помощью приставки резистивного отжига, вмонтированной в линию работы волочильной машины при скорости протягивания 18 м/с. Время теплового воздействия составило 0,015 с. Во втором варианте отжиг осуществляли в конвейерной печи электросопротивления в атмосфере паров воды в течение 59 мин. Выявлено, что оба варианта характеризуются практически одинаковыми значениями временного сопротивления и относительного сужения. Временное сопротивление увеличилось по отношению к горячекатаному состоянию с 240 до 260 МПа, что можно объяснить измельчением зеренной структуры и изменением текстурного состояния. При этом предел текучести снижен со 142 до 108 МПа, т. е. на 24 %. Следующая серия экспериментов поставлена с изменением энергии, при которой проводили кратковременный протяжной отжиг, и изменением силы тока в приставке отжига машины при волочении проволоки диаметром 1,78 мм со скоростью 25 м/с. Ступенчато изменяли плотность тока отжига от 691 до 731 А/мм 2. После волочения проводили отбор образцов для испытаний и определяли механические свойства растяжением образцов. Функция временного сопротивления в зависимости от плотности тока имеет слабо выраженный минимум с различием максимального и минимального значений ~4 %. Значительно более выраженный минимум при плотности тока 715 А/мм 2 наблюдают для условного предела текучести. Максимальное значение (149 МПа) отличается от минимального (133 МПа) на 11 %. При этой же плотности тока достигнуто максимальное относительное удлинение - 38 %. Таким образом, показано, что можно достигнуть улучшения пластических свойств либо применением конвейерного отжига, либо оптимизацией плотности тока в операции протяжного отжига. По отношению к протяжному отжигу конвейерный позволяет несколько снизить временное сопротивление меди и значительно уменьшить условный предел текучести. При плотности тока 715 А/мм 2 достигнуты минимальные прочностные и максимальные пластические свойства.

    KW - Annealing

    KW - Copper wire

    KW - Current density

    KW - Drawing

    KW - Placticity

    KW - Strain

    KW - Strength

    UR - http://www.scopus.com/inward/record.url?scp=84922515395&partnerID=8YFLogxK

    UR - https://elibrary.ru/item.asp?id=22155733

    M3 - Статья

    SP - 88

    EP - 92

    JO - Цветные металлы

    JF - Цветные металлы

    SN - 0372-2929

    IS - 10

    ER -