УРАВНЕНИЯ ГАМИЛЬТОНА - ЯКОБИ В ЭВОЛЮЦИОННЫХ ИГРАХ

Николай Андреевич Красовский, А. В. Кряжимский, Александр Михайлович Тарасьев

Результат исследований: Вклад в журналСтатья

Аннотация

Современные методы теории управления и конструкции обобщенных минимаксных решений уравнений Гамильтона - Якоби применяются к игре с ненулевой суммой, в которой рассматривается взаимодействие двух больших групп участников в рамках экономических или биологических эволюционных моделях. Случайные контакты между участниками из различных групп происходят в соответствии с управляемым динамическим процессом, который может быть интерпретирован как система дифференциальных уравнений Колмогорова. Коэффициенты уравнений не фиксируются заранее и могут выбираться как управляющие параметры по принципу обратной связи. Функции выигрыша участников определяются предельными функционалами на бесконечном горизонте. Рассматривается понятие динамического равновесия по Нэшу в классе управляемых обратных связей. Предлагается решение, основанное на максимизации гарантированных выигрышей. Гарантирующие стратегии конструируется в рамках теории обобщенных решений уравнений Гамильтона - Якоби. Аналитические формулировки получены для соответствующих функций цены. Генерируется равновесная траектория и исследуются ее свойства. Рассматриваемый подход обеспечивает новые качественные свойства равновесных траекторий в эволюционных играх.
Переведенное названиеHamilton-Jacobi equations in evolutionary games
Язык оригиналаРусский
Страницы (с-по)114-131
Число страниц18
ЖурналТруды института математики и механики УрО РАН
Том20
Номер выпуска3
СостояниеОпубликовано - 2014

ГРНТИ

  • 27.37.00 Вариационное исчисление и математическая теория оптимального управления

Уровень публикации

  • Перечень ВАК

Fingerprint Подробные сведения о темах исследования «УРАВНЕНИЯ ГАМИЛЬТОНА - ЯКОБИ В ЭВОЛЮЦИОННЫХ ИГРАХ». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать