TY - JOUR
T1 - ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ ОДНОРОДНОГО УРАВНЕНИЯ С КВАДРАТОМ ОПЕРАТОРА ЛАПЛАСА ПРИ ПОМОЩИ ИНТЕРПОЛЯЦИОННЫХ ВСПЛЕСКОВ
AU - Субботин, Юрий Николаевич
AU - Черных, Николай Иванович
PY - 2019
Y1 - 2019
N2 - В работе представлен численный метод восстановления бигармонических функций в круге по непрерывным граничным значениям самих функций и их нормальных производных с помощью гармонических в круге всплесков, интерполяционных на границе круга, по двоично-рациональным сеткам. При этом разложения решений краевых задач в громоздкие интерполяционные ряды по базису всплесков свернуты в последовательности их частичных сумм, компактно представимых по базисам подпространств соответствующего кратномасштабного анализа (КМА) пространств Харди гармонических в круге функций. Получены эффективные оценки аппроксимации решений частичными суммами любого порядка через наилучшие приближения граничных функций тригонометрическими полиномами чуть меньшего порядка. Это позволяет для практического обеспечения требуемой точности представления искомых бигармонических функций заранее выбрать масштабирующий параметр соответствующего подпространства КМА. Интерполяционная проекция на это подпространство кроме точности определяет простое аналитическое представление соотвествующих частичных сумм через подходящие сжатия и сдвиги масштабирующей функции, минуя сложные итерационные процедуры численного построения коэффициентов разложения граничных функций в ряды по интерполяционным всплескам. В работе выписаны решения с помощью интерполяционных и интерполяционно-ортогональных всплесков, построенных на базе всплесков Мейера. Вторые из них выгоднее использовать в случае, если граничные значения краевой задачи известны приближенно, например, получены экспериментально. Тогда можно будет использовать обычные хорошо известные процедуры дискретных ортогональных всплеск-преобразований для анализа и уточнения (корректировки) граничных значений. Для численной реализации предлагаемый метод значительно проще решения краевых задач с помощью ортогональных всплесков.
AB - В работе представлен численный метод восстановления бигармонических функций в круге по непрерывным граничным значениям самих функций и их нормальных производных с помощью гармонических в круге всплесков, интерполяционных на границе круга, по двоично-рациональным сеткам. При этом разложения решений краевых задач в громоздкие интерполяционные ряды по базису всплесков свернуты в последовательности их частичных сумм, компактно представимых по базисам подпространств соответствующего кратномасштабного анализа (КМА) пространств Харди гармонических в круге функций. Получены эффективные оценки аппроксимации решений частичными суммами любого порядка через наилучшие приближения граничных функций тригонометрическими полиномами чуть меньшего порядка. Это позволяет для практического обеспечения требуемой точности представления искомых бигармонических функций заранее выбрать масштабирующий параметр соответствующего подпространства КМА. Интерполяционная проекция на это подпространство кроме точности определяет простое аналитическое представление соотвествующих частичных сумм через подходящие сжатия и сдвиги масштабирующей функции, минуя сложные итерационные процедуры численного построения коэффициентов разложения граничных функций в ряды по интерполяционным всплескам. В работе выписаны решения с помощью интерполяционных и интерполяционно-ортогональных всплесков, построенных на базе всплесков Мейера. Вторые из них выгоднее использовать в случае, если граничные значения краевой задачи известны приближенно, например, получены экспериментально. Тогда можно будет использовать обычные хорошо известные процедуры дискретных ортогональных всплеск-преобразований для анализа и уточнения (корректировки) граничных значений. Для численной реализации предлагаемый метод значительно проще решения краевых задач с помощью ортогональных всплесков.
KW - biharmonic function
KW - boundary value problems
KW - interpolation wavelets
KW - multiresolution analysis (MRA)
KW - Biharmonic function
KW - Boundary value problems
KW - Multiresolution analysis (MRA)
KW - Interpolation wavelets
UR - https://elibrary.ru/item.asp?id=38071616
UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000485177500018
UR - http://www.scopus.com/inward/record.url?scp=85078495428&partnerID=8YFLogxK
U2 - 10.21538/0134-4889-2019-25-2-198-204
DO - 10.21538/0134-4889-2019-25-2-198-204
M3 - Статья
VL - 25
SP - 198
EP - 204
JO - Труды института математики и механики УрО РАН
JF - Труды института математики и механики УрО РАН
SN - 0134-4889
IS - 2
ER -