ЭКЗИСТЕНЦИАЛЬНЫЕ ВОПРОСЫ КОМИТЕТНЫХ КОНСТРУКЦИЙ. ЧАСТЬ II

Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

Аннотация

Рассматривается вопрос о существовании комитета системы линейных неравенств при дополнительных условиях. Большую часть статьи занимают результаты исследований Вл.Д. Мазурова и М.Ю. Хачая по комитетам систем линейных неравенств. Данная статья - непосредственное продолжение этих результатов. Даётся ответ на вопрос, каковы доказательства этих результатов в бесконечномерном случае. Это особенно трудный раздел проблемы. Комитет системы алгебраических неравенств - упорядоченное множество решающих правил, на основании которого формируется окончательная процедура принятия решений. Задача построения комитетов и их использование в экономике и технике актуальна, так как часто исходная их формулировка содержит противоречия и неформализованные разделы. Здесь рассматривается система однородных линейных неравенств с бесконечным множеством индексов. Множество решений может быть и пустым. Доказываются условия, при которых существует комитет этой системы. Из этой теоремы следует, что когда число предельных точек в левых частях неравенств конечно, то задача сводится к задаче построения независимых друг от друга комитетов. Приводится пример. В настоящее время большое значение приобретает факторный анализ с подобными особенностями, и для них тоже подходит предлагаемый математический аппарат. Эти же методы используются и в психологии, в том числе психологии бессознательного, изучение которой было инициировано К. Юнгом.
Переведенное названиеЭКЗИСТЕНЦИАЛЬНЫЕ ВОПРОСЫ КОМИТЕТНЫХ КОНСТРУКЦИЙ. ЧАСТЬ II
Язык оригиналаАнглийский
Страницы (с-по)114-120
ЖурналВестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника
Том19
Номер выпуска1
DOI
СостояниеОпубликовано - 2019

Отпечаток

Linear Inequalities
Limit Point
Ordered Set
Decision Rules
Factor Analysis
Solution Set
Continuation
Decision Making
Economics
Formulation
Theorem
Psychology

ГРНТИ

  • 47.00.00 ЭЛЕКТРОНИКА. РАДИОТЕХНИКА

Уровень публикации

  • Перечень ВАК

Цитировать

@article{0dce8f175bfa4fceb3424a0b8c3b0adf,
title = "EXISTENTIAL ISSUES OF COMMITTEE CONSTRUCTIONS. PART II",
abstract = "The question of the existence of a committee of a system of linear inequalities under additional conditions is considered. The most part of the article is devoted to the results of the research conducted by Vl.D. Mazurov and M.Y. Khachai on the committees of systems of linear inequalities. The given article represents the continuation of the results. The question of the proofs of the results in infinite-dimensional case is answered. This is the most difficult part of the problem. The committee of a system of algebraic inequalities is an ordered set of decision rules on the basis of which the final procedure of decision making is formed. The problem of committee construction and their application in economics and technics is topical since their initial formulation often contains controversies and non-formalized parts. Therein the system of homogeneous linear inequalities with an infinite set of indices is considered. Solution set can be empty as well. The conditions are proved under which there exist a committee of the system. As it follows from the theorem when the number of limit points in the left parts of inequalities is finite then the problem is reduced to that of construction of mutually independent committees. The example is given. At present factor analysis with the similar features is becoming increasingly important, the given mathematical apparatus can be applied to them as well. Further on, these methods are applied in psychology including a depth one the research of which was initiated by Carl Jung.",
author = "Mazurov, {Vl. D.} and POLYAKOVA, {E. YU.}",
year = "2019",
doi = "10.14529/ctcr190110",
language = "English",
volume = "19",
pages = "114--120",
journal = "Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника",
issn = "1991-976X",
publisher = "Южно-Уральский государственный университет (национальный исследовательский университет)",
number = "1",

}

EXISTENTIAL ISSUES OF COMMITTEE CONSTRUCTIONS. PART II. / Mazurov, Vl. D.; POLYAKOVA , E. YU.

В: Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, Том 19, № 1, 2019, стр. 114-120.

Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

TY - JOUR

T1 - EXISTENTIAL ISSUES OF COMMITTEE CONSTRUCTIONS. PART II

AU - Mazurov, Vl. D.

AU - POLYAKOVA , E. YU.

PY - 2019

Y1 - 2019

N2 - The question of the existence of a committee of a system of linear inequalities under additional conditions is considered. The most part of the article is devoted to the results of the research conducted by Vl.D. Mazurov and M.Y. Khachai on the committees of systems of linear inequalities. The given article represents the continuation of the results. The question of the proofs of the results in infinite-dimensional case is answered. This is the most difficult part of the problem. The committee of a system of algebraic inequalities is an ordered set of decision rules on the basis of which the final procedure of decision making is formed. The problem of committee construction and their application in economics and technics is topical since their initial formulation often contains controversies and non-formalized parts. Therein the system of homogeneous linear inequalities with an infinite set of indices is considered. Solution set can be empty as well. The conditions are proved under which there exist a committee of the system. As it follows from the theorem when the number of limit points in the left parts of inequalities is finite then the problem is reduced to that of construction of mutually independent committees. The example is given. At present factor analysis with the similar features is becoming increasingly important, the given mathematical apparatus can be applied to them as well. Further on, these methods are applied in psychology including a depth one the research of which was initiated by Carl Jung.

AB - The question of the existence of a committee of a system of linear inequalities under additional conditions is considered. The most part of the article is devoted to the results of the research conducted by Vl.D. Mazurov and M.Y. Khachai on the committees of systems of linear inequalities. The given article represents the continuation of the results. The question of the proofs of the results in infinite-dimensional case is answered. This is the most difficult part of the problem. The committee of a system of algebraic inequalities is an ordered set of decision rules on the basis of which the final procedure of decision making is formed. The problem of committee construction and their application in economics and technics is topical since their initial formulation often contains controversies and non-formalized parts. Therein the system of homogeneous linear inequalities with an infinite set of indices is considered. Solution set can be empty as well. The conditions are proved under which there exist a committee of the system. As it follows from the theorem when the number of limit points in the left parts of inequalities is finite then the problem is reduced to that of construction of mutually independent committees. The example is given. At present factor analysis with the similar features is becoming increasingly important, the given mathematical apparatus can be applied to them as well. Further on, these methods are applied in psychology including a depth one the research of which was initiated by Carl Jung.

UR - https://elibrary.ru/item.asp?id=36936725

U2 - 10.14529/ctcr190110

DO - 10.14529/ctcr190110

M3 - Article

VL - 19

SP - 114

EP - 120

JO - Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника

JF - Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника

SN - 1991-976X

IS - 1

ER -