1-решеточные изоморфизмы моноидов, разложимых в свободное произведение

Результат исследований: Вклад в журналСтатьярецензирование

Аннотация

Пусть и - моноиды. Обозначим через решетку всех подмоноидов моноида . 1-решеточным изоморфизмом моноида на моноид называется всякий изоморфизм решетки на решетку . Говорят, что биекция моноида на моноид индуцирует 1-решеточный изоморфизм на , если для любого подмоноида . Моноид строго 1-решеточно определяется, если всякий его -решеточный изоморфизм на произвольный моноид индуцируется некоторым изоморфизмом или антиизоморфизмом. Похожие понятия группы, строго определяющейся решеткой подгрупп и полугруппы, строго определяющейся решеткой подполугрупп, давно привлекали внимание и активно изучались в классах групп и полугрупп. В случае моноидов здесь почти ничего не было известно. Однако около 40 лет назад был поставлен вопрос: будет ли произвольный моноид, разложимый в свободное произведение, строго 1-решеточно определяться? Получен исчерпывающий ответ на этот вопрос, а именно доказано, что произвольный моноид, нетривиальным образом разложимый в свободное произведение, строго 1-решеточно определяется. Этот результат перекликается с известными утверждениями о строгой решеточной определяемости как группы, нетривиальным образом разложимой в свободное произведение, так и полугруппы, разложимый в свободное произведение.
Переведенное название1-LATTICE ISOMORPHISMS OF MONOIDS DECOMPOSABLE INTO A FREE PRODUCT
Язык оригиналаРусский
Страницы (с-по)142-153
Число страниц12
ЖурналТруды института математики и механики УрО РАН
Том26
Номер выпуска3
DOI
СостояниеОпубликовано - 2020

Ключевые слова

  • 1-lattice isomorphism
  • Free product
  • Monoid
  • Submonoid lattice

Предметные области ASJC Scopus

  • Applied Mathematics
  • Mathematics(all)
  • Computer Science Applications
  • Computational Mechanics

Предметные области WoS

  • Математика, Прикладная

ГРНТИ

  • 27.00.00 МАТЕМАТИКА

Уровень публикации

  • Перечень ВАК

Fingerprint

Подробные сведения о темах исследования «1-решеточные изоморфизмы моноидов, разложимых в свободное произведение». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать