A numerically efficient and conservative model for a Riesz space-fractional Klein–Gordon–Zakharov system

A. S. Hendy, J. E. Macías-Díaz

Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

ЯзыкАнглийский
Страницы22-37
Число страниц16
ЖурналCommunications in Nonlinear Science and Numerical Simulation
Том71
DOI
СостояниеОпубликовано - 15 июн 2019

Отпечаток

Riesz Space
Numerical models
Fractional
Fractional Derivative
Energy
Taylor Polynomial
Derivatives
Energy Method
Partial derivative
Existence and Uniqueness of Solutions
Fractional Order
Model
Convergence Properties
Preservation
Analogy
Numerical Study
Rate of Convergence
Approximate Solution
Fixed point
Polynomials

Ключевые слова

    Предметные области ASJC Scopus

    • Numerical Analysis
    • Modelling and Simulation
    • Applied Mathematics

    Предметные области WoS

    • Математика, Прикладная
    • Математика, Междисциплинарные приложения
    • Механика
    • Физика, Жидкостей и плазмы
    • Физика, Математическая

    Цитировать

    @article{b65362fa945944c9964863bd4c119daf,
    title = "A numerically efficient and conservative model for a Riesz space-fractional Klein–Gordon–Zakharov system",
    keywords = "Conservation of energy, Energy-conserving method, Fractional Klein–Gordon–Zakharov equations, Fractional-order centered differences, Numerical efficiency analysis, Riesz space-fractional equations, Fractional Klein-Gordon-Zakharov equations, WELL-POSEDNESS, SCHEME, SUPRATRANSMISSION, PRESERVING METHOD, KUZNETSOV EQUATION, WAVE-EQUATIONS, SCATTERING",
    author = "Hendy, {A. S.} and Mac{\'i}as-D{\'i}az, {J. E.}",
    year = "2019",
    month = "6",
    day = "15",
    doi = "10.1016/j.cnsns.2018.10.025",
    language = "English",
    volume = "71",
    pages = "22--37",
    journal = "Communications in Nonlinear Science and Numerical Simulation",
    issn = "1007-5704",
    publisher = "Elsevier BV",

    }

    A numerically efficient and conservative model for a Riesz space-fractional Klein–Gordon–Zakharov system. / Hendy, A. S.; Macías-Díaz, J. E.

    В: Communications in Nonlinear Science and Numerical Simulation, Том 71, 15.06.2019, стр. 22-37.

    Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

    TY - JOUR

    T1 - A numerically efficient and conservative model for a Riesz space-fractional Klein–Gordon–Zakharov system

    AU - Hendy, A. S.

    AU - Macías-Díaz, J. E.

    PY - 2019/6/15

    Y1 - 2019/6/15

    KW - Conservation of energy

    KW - Energy-conserving method

    KW - Fractional Klein–Gordon–Zakharov equations

    KW - Fractional-order centered differences

    KW - Numerical efficiency analysis

    KW - Riesz space-fractional equations

    KW - Fractional Klein-Gordon-Zakharov equations

    KW - WELL-POSEDNESS

    KW - SCHEME

    KW - SUPRATRANSMISSION

    KW - PRESERVING METHOD

    KW - KUZNETSOV EQUATION

    KW - WAVE-EQUATIONS

    KW - SCATTERING

    UR - http://www.scopus.com/inward/record.url?scp=85056701526&partnerID=8YFLogxK

    UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000454630700002

    U2 - 10.1016/j.cnsns.2018.10.025

    DO - 10.1016/j.cnsns.2018.10.025

    M3 - Article

    VL - 71

    SP - 22

    EP - 37

    JO - Communications in Nonlinear Science and Numerical Simulation

    T2 - Communications in Nonlinear Science and Numerical Simulation

    JF - Communications in Nonlinear Science and Numerical Simulation

    SN - 1007-5704

    ER -