AUTOMORPHISMS OF A REMOTELY REGULAR GRAPH WITH AN INTERSECTION ARRAY

Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

Аннотация

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance- regular graph with intersection array {30, 27, 24; 1, 2, 10g. Let G = Aut(Gamma) is nonsolvable group, (G) over bar = G/S(G) and (T) over bar is the socle of (G) over bar. If Gamma is vertex- symmetric then (G) is {2g} - group, and (T) over bar congruent to L-2 (11), M-11, U-5 (2), M-22, A(11), HiS.

Переведенное названиеAUTOMORPHISMS OF A REMOTELY REGULAR GRAPH WITH AN INTERSECTION ARRAY
Язык оригиналаРусский
Страницы (с-по)493-500
Число страниц8
ЖурналSiberian Electronic Mathematical Reports
Том16
DOI
СостояниеОпубликовано - 2019

Ключевые слова

    Предметные области WoS

    • Математика

    Цитировать

    @article{1004ae6d94cf45a6a7a2255ccb007c48,
    title = "AUTOMORPHISMS OF A REMOTELY REGULAR GRAPH WITH AN INTERSECTION ARRAY",
    abstract = "Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance- regular graph with intersection array {30, 27, 24; 1, 2, 10g. Let G = Aut(Gamma) is nonsolvable group, (G) over bar = G/S(G) and (T) over bar is the socle of (G) over bar. If Gamma is vertex- symmetric then (G) is {2g} - group, and (T) over bar congruent to L-2 (11), M-11, U-5 (2), M-22, A(11), HiS.",
    keywords = "strongly regular graph, distance-regular graph, automorphism",
    author = "Makhnev, {Alexandr Alekseevich} and Belousova, {Veronika Igorevna}",
    year = "2019",
    doi = "10.33048/semi.2019.16.031",
    language = "Русский",
    volume = "16",
    pages = "493--500",
    journal = "Siberian Electronic Mathematical Reports",
    issn = "1813-3304",
    publisher = "Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук",

    }

    AUTOMORPHISMS OF A REMOTELY REGULAR GRAPH WITH AN INTERSECTION ARRAY. / Makhnev, Alexandr Alekseevich; Belousova, Veronika Igorevna.

    В: Siberian Electronic Mathematical Reports, Том 16, 2019, стр. 493-500.

    Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

    TY - JOUR

    T1 - AUTOMORPHISMS OF A REMOTELY REGULAR GRAPH WITH AN INTERSECTION ARRAY

    AU - Makhnev, Alexandr Alekseevich

    AU - Belousova, Veronika Igorevna

    PY - 2019

    Y1 - 2019

    N2 - Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance- regular graph with intersection array {30, 27, 24; 1, 2, 10g. Let G = Aut(Gamma) is nonsolvable group, (G) over bar = G/S(G) and (T) over bar is the socle of (G) over bar. If Gamma is vertex- symmetric then (G) is {2g} - group, and (T) over bar congruent to L-2 (11), M-11, U-5 (2), M-22, A(11), HiS.

    AB - Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance- regular graph with intersection array {30, 27, 24; 1, 2, 10g. Let G = Aut(Gamma) is nonsolvable group, (G) over bar = G/S(G) and (T) over bar is the socle of (G) over bar. If Gamma is vertex- symmetric then (G) is {2g} - group, and (T) over bar congruent to L-2 (11), M-11, U-5 (2), M-22, A(11), HiS.

    KW - strongly regular graph

    KW - distance-regular graph

    KW - automorphism

    UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=000465436800001

    U2 - 10.33048/semi.2019.16.031

    DO - 10.33048/semi.2019.16.031

    M3 - Статья

    VL - 16

    SP - 493

    EP - 500

    JO - Siberian Electronic Mathematical Reports

    JF - Siberian Electronic Mathematical Reports

    SN - 1813-3304

    ER -