Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given fourier transform

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы конференцииНаучно-исследовательскаярецензирование

Язык оригиналаАнглийский
Название основной публикацииMathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings
РедакторыMichael Khachay, Panos Pardalos, Yury Kochetov
ИздательSpringer Verlag
Страницы434-448
Число страниц15
ISBN (печатное издание)9783030226282
DOI
СостояниеОпубликовано - 1 янв 2019
Событие18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019 - Ekaterinburg, Российская Федерация
Продолжительность: 8 июл 201912 июл 2019

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том11548 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

Конференция

Конференция18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019
СтранаРоссийская Федерация
ГородEkaterinburg
Период08/07/201912/07/2019

Отпечаток

Best Approximation
Smooth function
Mathematical operators
Fourier transform
Fourier transforms
Operator
Derivative
Derivatives
Functions of Bounded Variation
L-space
Norm
Uniform Norm
Continuously differentiable
Approximation Problem
Bounded Operator
Absolutely Continuous

Ключевые слова

    Предметные области ASJC Scopus

    • Theoretical Computer Science
    • Computer Science(all)

    Цитировать

    Arestov, V. V. (2019). Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given fourier transform. В M. Khachay, P. Pardalos, & Y. Kochetov (Ред.), Mathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings (стр. 434-448). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 11548 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-22629-9_30
    Arestov, Vitalii V. / Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given fourier transform. Mathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings. редактор / Michael Khachay ; Panos Pardalos ; Yury Kochetov. Springer Verlag, 2019. стр. 434-448 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
    @inproceedings{5f1591875fda41e88d68ef5bfbd74521,
    title = "Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given fourier transform",
    keywords = "Functions with exactly or approximately given Fourier transform, Kolmogorov inequality, Optimal differentiation method",
    author = "Arestov, {Vitalii V.}",
    year = "2019",
    month = "1",
    day = "1",
    doi = "10.1007/978-3-030-22629-9_30",
    language = "English",
    isbn = "9783030226282",
    series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
    publisher = "Springer Verlag",
    pages = "434--448",
    editor = "Michael Khachay and Panos Pardalos and Yury Kochetov",
    booktitle = "Mathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings",
    address = "Germany",

    }

    Arestov, VV 2019, Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given fourier transform. в M Khachay, P Pardalos & Y Kochetov (ред.), Mathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), том. 11548 LNCS, Springer Verlag, стр. 434-448, 18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019, Ekaterinburg, Российская Федерация, 08/07/2019. https://doi.org/10.1007/978-3-030-22629-9_30

    Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given fourier transform. / Arestov, Vitalii V.

    Mathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings. ред. / Michael Khachay; Panos Pardalos; Yury Kochetov. Springer Verlag, 2019. стр. 434-448 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 11548 LNCS).

    Результат исследований: Глава в книге, отчете, сборнике статейМатериалы конференцииНаучно-исследовательскаярецензирование

    TY - GEN

    T1 - Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given fourier transform

    AU - Arestov, Vitalii V.

    PY - 2019/1/1

    Y1 - 2019/1/1

    KW - Functions with exactly or approximately given Fourier transform

    KW - Kolmogorov inequality

    KW - Optimal differentiation method

    UR - http://www.scopus.com/inward/record.url?scp=85067651702&partnerID=8YFLogxK

    U2 - 10.1007/978-3-030-22629-9_30

    DO - 10.1007/978-3-030-22629-9_30

    M3 - Conference contribution

    SN - 9783030226282

    T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

    SP - 434

    EP - 448

    BT - Mathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings

    A2 - Khachay, Michael

    A2 - Pardalos, Panos

    A2 - Kochetov, Yury

    PB - Springer Verlag

    ER -

    Arestov VV. Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given fourier transform. В Khachay M, Pardalos P, Kochetov Y, редакторы, Mathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings. Springer Verlag. 2019. стр. 434-448. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). https://doi.org/10.1007/978-3-030-22629-9_30