Iterative Processes for Ill-Posed Problems with a Monotone Operator

Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

Язык оригиналаАнглийский
Страницы (с-по)217-229
Число страниц13
ЖурналSiberian Advances in Mathematics
Том29
Номер выпуска3
DOI
СостояниеОпубликовано - 1 июл 2019

Отпечаток

Monotone Operator
Ill-posed Problem
Iterative Process
Regularization
Modified Newton Method
Control Parameter
Irregular
Error Estimates
Adjustment
Inverse Problem
Approximate Solution
Converge
Iteration
Approximation

Ключевые слова

    Предметные области ASJC Scopus

    • Mathematics(all)

    Цитировать

    @article{bd96bb312fa742cb8f13076b594e1790,
    title = "Iterative Processes for Ill-Posed Problems with a Monotone Operator",
    keywords = "error estimation, ill-posed problem, Lavrentiev’s regularization scheme, Newton’s method, κ-processes",
    author = "Vasin, {V. V.}",
    year = "2019",
    month = "7",
    day = "1",
    doi = "10.3103/S1055134419030076",
    language = "English",
    volume = "29",
    pages = "217--229",
    journal = "Siberian Advances in Mathematics",
    issn = "1055-1344",
    publisher = "Springer Verlag",
    number = "3",

    }

    Iterative Processes for Ill-Posed Problems with a Monotone Operator. / Vasin, V. V.

    В: Siberian Advances in Mathematics, Том 29, № 3, 01.07.2019, стр. 217-229.

    Результат исследований: Вклад в журналСтатьяНаучно-исследовательскаярецензирование

    TY - JOUR

    T1 - Iterative Processes for Ill-Posed Problems with a Monotone Operator

    AU - Vasin, V. V.

    PY - 2019/7/1

    Y1 - 2019/7/1

    KW - error estimation

    KW - ill-posed problem

    KW - Lavrentiev’s regularization scheme

    KW - Newton’s method

    KW - κ-processes

    UR - http://www.scopus.com/inward/record.url?scp=85071447984&partnerID=8YFLogxK

    U2 - 10.3103/S1055134419030076

    DO - 10.3103/S1055134419030076

    M3 - Article

    VL - 29

    SP - 217

    EP - 229

    JO - Siberian Advances in Mathematics

    JF - Siberian Advances in Mathematics

    SN - 1055-1344

    IS - 3

    ER -