Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods

Результат исследований: Глава в книге, отчете, сборнике статейМатериалы конференцииНаучно-исследовательскаярецензирование

Язык оригиналаАнглийский
Название основной публикацииProceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы199-202
Число страниц4
ISBN (электронное издание)9781538649466
DOI
СостояниеОпубликовано - 13 июн 2018
Событие2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018 - Yekaterinburg, Российская Федерация
Продолжительность: 6 мая 20188 мая 2018

Конференция

Конференция2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018
СтранаРоссийская Федерация
ГородYekaterinburg
Период06/05/201808/05/2018

Отпечаток

Sunspots
Model Comparison
sunspots
forecasting
Artificial Neural Network
Forecast
Neural networks
Time series
Data Assimilation
assimilation
Forecasting
High Accuracy
Prediction
predictions
Model

Ключевые слова

    Предметные области ASJC Scopus

    • Information Systems
    • Biomedical Engineering
    • Computer Networks and Communications
    • Computer Science Applications
    • Modelling and Simulation
    • Instrumentation
    • Electrical and Electronic Engineering
    • Control and Optimization

    Цитировать

    Safiullin, N., Porshnev, S., & Kleeorin, N. (2018). Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods. В Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018 (стр. 199-202). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/USBEREIT.2018.8384584
    Safiullin, Nikolai ; Porshnev, Sergey ; Kleeorin, Nathan. / Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods. Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018. Institute of Electrical and Electronics Engineers Inc., 2018. стр. 199-202
    @inproceedings{ef49b6a4a4254591b858438665354885,
    title = "Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods",
    keywords = "artificial neural network, data analysis, solar activity, sunspot numbers, time series forecast",
    author = "Nikolai Safiullin and Sergey Porshnev and Nathan Kleeorin",
    year = "2018",
    month = "6",
    day = "13",
    doi = "10.1109/USBEREIT.2018.8384584",
    language = "English",
    pages = "199--202",
    booktitle = "Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018",
    publisher = "Institute of Electrical and Electronics Engineers Inc.",
    address = "United States",

    }

    Safiullin, N, Porshnev, S & Kleeorin, N 2018, Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods. в Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018. Institute of Electrical and Electronics Engineers Inc., стр. 199-202, 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018, Yekaterinburg, Российская Федерация, 06/05/2018. https://doi.org/10.1109/USBEREIT.2018.8384584

    Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods. / Safiullin, Nikolai; Porshnev, Sergey; Kleeorin, Nathan.

    Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018. Institute of Electrical and Electronics Engineers Inc., 2018. стр. 199-202.

    Результат исследований: Глава в книге, отчете, сборнике статейМатериалы конференцииНаучно-исследовательскаярецензирование

    TY - GEN

    T1 - Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods

    AU - Safiullin, Nikolai

    AU - Porshnev, Sergey

    AU - Kleeorin, Nathan

    PY - 2018/6/13

    Y1 - 2018/6/13

    KW - artificial neural network

    KW - data analysis

    KW - solar activity

    KW - sunspot numbers

    KW - time series forecast

    UR - http://www.scopus.com/inward/record.url?scp=85049898511&partnerID=8YFLogxK

    U2 - 10.1109/USBEREIT.2018.8384584

    DO - 10.1109/USBEREIT.2018.8384584

    M3 - Conference contribution

    SP - 199

    EP - 202

    BT - Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018

    PB - Institute of Electrical and Electronics Engineers Inc.

    ER -

    Safiullin N, Porshnev S, Kleeorin N. Monthly sunspot numbers forecast with artificial neural network combined with dynamo model: Comparison with modern methods. В Proceedings - 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018. Institute of Electrical and Electronics Engineers Inc. 2018. стр. 199-202 https://doi.org/10.1109/USBEREIT.2018.8384584