АНАЛОГ ТЕОРЕМЫ О ДВУХ КОНСТАНТАХ И ОПТИМАЛЬНОЕ ВОССТАНОВЛЕНИЕ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

科研成果: Article

摘要

Several related extremal problems for analytic functions in a simply connected domain with rectifiable Jordan boundary are treated. The sharp inequality is established between a value of an analytic function in the domain and the weighted integral norms of the restrictions of its boundary values to two measurable subsets and of the boundary of the domain. It is an analogue of the F. and R. Nevanlinna two-constants theorem. The corresponding problems of optimal recovery of a function from its approximate boundary values on and of the best approximation to the functional of analytic extension of a function from the part of the boundary into the domain are solved. Bibliography: 35 titles.
投稿的翻译标题An analogue of the two-constants theorem and optimal recovery of analytic functions
源语言Russian
页(从-至)3-16
页数14
期刊Математический сборник
210
10
DOI
Published - 2019

GRNTI

  • 27.27.00

Level of Research Output

  • VAK List

指纹 探究 'АНАЛОГ ТЕОРЕМЫ О ДВУХ КОНСТАНТАХ И ОПТИМАЛЬНОЕ ВОССТАНОВЛЕНИЕ АНАЛИТИЧЕСКИХ ФУНКЦИЙ' 的科研主题。它们共同构成独一无二的指纹。

引用此