Асимптотическое поведение множеств достижимости на малых временных промежутках

M. I. Gusev, I.O. Osipov

科研成果: Article同行评审

3 引用 (Scopus)

摘要

Геометрическая структура множеств достижимости на малых временных промежутках играет важную роль в теории управления, в частности при решении задач локального синтеза. В данной работе рассматривается задача приближенного описания множеств достижимости на малых временах для аффинных по управлению систем с интегральными квадратичными ограничениями на управление. Используя замену времени, авторы вместо исходного множества рассматривают множество достижимости для управляемой системы на единичном интервале, содержащей малый параметр (длину временного интервала для исходной системы). При этом ограничения на управление заданы шаром малого радиуса в гильбертовом пространстве L2. При определенных условиях, накладываемых на грамиан управляемости линеаризованной системы, такое множество достижимости оказывается выпуклым при достаточно малом значении параметра. В работе показано, что в этом случае множество достижимости асимптотически близко по форме к эллипсоиду в пространстве состояний. Доказательство данного факта базируется на представлении множества достижимости в виде образа гильбертова шара малого радиуса в L2 при нелинейном отображении его в Rn. В частности, данное асимптотическое представление имеет место для достаточно широкого класса нелинейных управляемых систем второго порядка с интегральными ограничениями. В статье приведены три примера систем, множества достижимости которых демонстрируют как наличие указанного асимптотического поведения, так и отсутствие последнего при невыполнении нужных условий.
投稿的翻译标题Asymptotic behavior of reachable sets on small time intervals
源语言Russian
页(从-至)86-99
页数14
期刊Труды института математики и механики УрО РАН
25
3
DOI
Published - 2019

ASJC Scopus subject areas

  • Applied Mathematics
  • Mathematics(all)
  • Computer Science Applications
  • Computational Mechanics

WoS ResearchAreas Categories

  • Mathematics, Applied

GRNTI

  • 27.37.00

Level of Research Output

  • VAK List

指纹

探究 'Асимптотическое поведение множеств достижимости на малых временных промежутках' 的科研主题。它们共同构成独一无二的指纹。

引用此