МЕТОД ДЕЛЬСАРТА В ЗАДАЧЕ О КОНТАКТНЫХ ЧИСЛАХ ПРОСТРАНСТВ БОЛЬШИХ РАЗМЕРНОСТЕЙ

科研成果: Article同行评审

摘要

We consider extremal problems for continuous functions that are nonpositive on a closed interval and can be represented as series in Gegenbauer polynomials with nonnegative coefficients. These problems arise from the Delsarte method of finding an upper bound for the kissing number in the Euclidean space. We develop a general method for solving such problems. Using this method, we reproduce results of previous authors and find a solution in the following 11 new dimensions: 147, 157, 158, 159, 160, 162, 163, 164, 165, 167, and 173. The arising extremal polynomials are of a new type.
投稿的翻译标题Delsarte method in the problem on kissing numbers in high-dimensional spaces
源语言Russian
页(从-至)224-239
页数16
期刊Труды института математики и механики УрО РАН
18
4
Published - 2012

GRNTI

  • 27.00.00 MATHEMATICS

Level of Research Output

  • VAK List

指纹

探究 'МЕТОД ДЕЛЬСАРТА В ЗАДАЧЕ О КОНТАКТНЫХ ЧИСЛАХ ПРОСТРАНСТВ БОЛЬШИХ РАЗМЕРНОСТЕЙ' 的科研主题。它们共同构成独一无二的指纹。

引用此