ОБ АВТОМОРФИЗМАХ ДИСТАНЦИОННО РЕГУЛЯРНОГО ГРАФА С МАССИВОМ ПЕРЕСЕЧЕНИЙ {69,56,10;1,14,60}

Александр Алексеевич Махнев, Марина Сефовна Нирова

科研成果: Article同行评审

摘要

Let be a distance-regular graph of diameter 3 with eigenvalues . If , then the graph is strongly regular and the complementary graph is pseudogeometric for . If does not contain triangles and the number of its vertices~ is less than 800, then has intersection array {69,56,10;1,14,60}. In this case is a graph with parameters (392,46,0,6) and is a strongly regular graph with parameters (392,115,18,40). Note that the neighborhood of any vertex in a graph with parameters (392,115,18,40) is a strongly regular graph with parameters (115,18,1,3), and its existence is unknown. In this paper, we find possible automorphisms of this strongly regular graph and automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}. In particular, it is proved that the latter graph is not arc-transitive.
投稿的翻译标题On automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}
源语言Russian
页(从-至)182-190
页数9
期刊Труды института математики и механики УрО РАН
23
3
DOI
Published - 2017

GRNTI

  • 27.45.00

Level of Research Output

  • VAK List

指纹

探究 'ОБ АВТОМОРФИЗМАХ ДИСТАНЦИОННО РЕГУЛЯРНОГО ГРАФА С МАССИВОМ ПЕРЕСЕЧЕНИЙ {69,56,10;1,14,60}' 的科研主题。它们共同构成独一无二的指纹。

引用此