ОДНОШАГОВЫЕ ЧИСЛЕННЫЕ МЕТОДЫ ДЛЯ РЕШЕНИЯ СМЕШАННЫХ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

科研成果: Article同行评审

摘要

First-order partial differential equations are reduced to ordinary differential equations by the method of characteristics. If there is a delay in the original equation, a similar method reduces the equation to a mixed functional differential equation with influence effects in the space variable and with time heredity. We present schemes of one-step multistage methods (analogs of explicit Runge-Kutta methods) for the numerical solution of mixed functional differential equations with the use of two-dimensional interpolation by degenerate splines. Orders of convergence are studied and results of numerical experiments on test examples are given.
投稿的翻译标题One-step numerical methods for mixed functional differential equations
源语言Russian
页(从-至)187-197
页数11
期刊Труды института математики и механики УрО РАН
21
2
Published - 2015

GRNTI

  • 27.41.00

Level of Research Output

  • VAK List

指纹

探究 'ОДНОШАГОВЫЕ ЧИСЛЕННЫЕ МЕТОДЫ ДЛЯ РЕШЕНИЯ СМЕШАННЫХ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ' 的科研主题。它们共同构成独一无二的指纹。

引用此