ЭКСТРЕМАЛЬНАЯ ФУНКЦИЯ В ЗАДАЧЕ ДЕЛЬСАРТА ОЦЕНКИ СВЕРХУ КОНТАКТНОГО ЧИСЛА ТРЕХМЕРНОГО ПРОСТРАНСТВА

科研成果: Article同行评审

摘要

We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that the prolem has a unique solution, which is a polynomial of degree . This polynomial is a linear combination of Legendre polynomials of degrees with positive coefficients; it has simple root and five roots of multiplicity in . Also we consider dual problem for nonnegative measures on . We prove that extremal measure is unique.
投稿的翻译标题The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
源语言Russian
页(从-至)130-141
期刊Труды института математики и механики УрО РАН
20
1
Published - 2014

GRNTI

  • 27.21.00

Level of Research Output

  • VAK List

指纹

探究 'ЭКСТРЕМАЛЬНАЯ ФУНКЦИЯ В ЗАДАЧЕ ДЕЛЬСАРТА ОЦЕНКИ СВЕРХУ КОНТАКТНОГО ЧИСЛА ТРЕХМЕРНОГО ПРОСТРАНСТВА' 的科研主题。它们共同构成独一无二的指纹。

引用此