PTAS ДЛЯ ЗАДАЧИ MIN-K-SCCP В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ ПРОИЗВОЛЬНОЙ ФИКСИРОВАННОЙ РАЗМЕРНОСТИ

科研成果: Article同行评审

摘要

We study the Min--SCCP on a partition of a complete weighted digraph into vertex-disjoint cycles of minimum total weight. This problem is a generalization of the known traveling salesman problem (TSP) and a special case of the classical vehicle routing problem (VRP). It is known that the problem Min--SCCP is strongly -hard and preserves its intractability even in the geometric statement. For the Euclidean Min--SCCP in with , we construct a polynomial-time approximation scheme, which generalizes the approach proposed earlier for the planar Min-2-SCCP. For any fixed the scheme finds a -approximate solution in time.
投稿的翻译标题A PTAS for the Min--SCCP in a Euclidean space of arbitrary fixed dimension
源语言Russian
页(从-至)268-278
页数11
期刊Труды института математики и механики УрО РАН
21
3
Published - 2015

GRNTI

  • 27.45.00

Level of Research Output

  • VAK List

指纹 探究 'PTAS ДЛЯ ЗАДАЧИ MIN-K-SCCP В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ ПРОИЗВОЛЬНОЙ ФИКСИРОВАННОЙ РАЗМЕРНОСТИ' 的科研主题。它们共同构成独一无二的指纹。

引用此